Supporting information for

Optimisation of Dynamic Nuclear Polarisation using "offthe-shelf" Gd(III)-based polarising agents

Daniel J. Cheney^a, Paolo Cerreia Vioglio^b, Adam Brookfield^c and Frédéric Blanc^{*ade}

^a Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom

^b DNP MAS NMR Facility, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 3RD, United Kingdom

^c Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, United Kingdom

^{*d*} Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, United Kingdom

^e Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, United Kingdom

* Author to whom correspondence should be addressed: frederic.blanc@liverpool.ac.uk

Figure S1: Comparison of the DNP-enhanced ¹⁵N NMR spectra of 2-¹³C,¹⁵N-glycine with 20 mM GdBr₃, using a triple resonance (HXY) or double resonance (HX) probe.

Table S1: List of peaks found in the HRMS spectra of all Gd(III) compounds in 3/2 v/v glycerol/H₂O Peaks arising from the fragmentation of glycerol are not shown.

Species	m/z (calculated)	m/z (observed)						
Gd(NO ₃) ₃ ·6H ₂ O								
[GdO] ⁺	173.9190	173.9185						
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0026						
[Gd ³⁺ + 2 × glycerol + NO ³⁻ – H ⁺] ⁺	402.9988	402.9981						
GdCl₃·6H	20							
[GdO]⁺	173.9190	173.9188						
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0034						
[Gd ³⁺ + 2 × glycerol + Cl ⁻ − H ⁺] ⁺	375.9798	375.9793						
Gd ₂ (SO ₄) ₃ ·8H ₂ O								
[GdO]⁺	173.9190	173.9184						
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0022						
$[Gd^{3+} + 2 \times glycerol + SO_4^{2-}]^+$	437.9705	437.9605						
GdBr₃·13ŀ	H ₂ O							
[GdO]⁺	173.9190	173.9179						
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0021						
[Gd³+ + 2 × glycerol + Br⁻ − H+]+	419.9293	419.9267						
Gd(OAc) ₃ ·4	H ₂ O							
[GdO]⁺	173.9190	173.9181						
[2 × Gd ³⁺ + 2 × glycerol – 4 × H ⁺] ²⁺	247.9558	247.9546						
$[2 \times \text{Gd}^{3+} + 6 \times \text{H}_2\text{O} + 2 \times \text{OAc}^ 2 \times \text{H}^+]^{2+}$	269.9613	269.9684						
[2 × Gd ³⁺ + 10 × H ₂ O + OAc ⁻ − 3 × H ⁺] ²⁺	275.9718	275.9689						
$[2 \times Gd^{3+} + 3 \times glycerol - 4 \times H^+]^{2+}$	293.9795	293.9806						
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0027						
$[2 \times Gd^{3+} + glycerol + 12 \times H_2O + OAc^ 3 \times H^+]^{2+}$	340.0061	340.0027						
$[2 \times Gd^{3+} + 2 \times glycerol + 7 \times H_2O + OAc^ 3 \times H^+]^{2+}$	341.0033	341.0043						
$[2 \times Gd^{3+} + 2 \times glycerol + H_2O + 2 \times OAc^ 3 \times H^+]^+$	632.9566	632.9554						
$[2 \times Gd^{3+} + glycerol + 2 \times H_2O + 4 \times OAc^{-} - H^{+}]^{+}$	678.9621	678.9617						
$Gd(NO_3)_3 \cdot 6H_2O + glycine$								
[GdO]⁺	173.9190	173.9181						
[Gd ³⁺ + glycine + glycerol − 2 × H ⁺] ⁺	322.9878	322.9862						

[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0014					
[Gd ³⁺ + 3 × glycine – 2 × H ⁺] ⁺	381.0045	381.0030					
[Gd ³⁺ + 2 × glycine + glycerol – 2 × H ⁺] ⁺	398.0199	398.0180					
[Gd ³⁺ + glycine + 2 × glycerol – 2 × H ⁺] ⁺	415.0352	415.0333					
GdCl ₃ ·6H ₂ O + glycine							
[GdO]⁺	173.9190	173.9184					
[Gd ³⁺ + glycine + glycerol – 2 × H ⁺] ⁺	322.9878	322.9871					
$[Gd^{3+} + 2 \times glycerol - 2 \times H^+]^+$	340.0031	340.0026					
[Gd ³⁺ + 3 × glycine – 2 × H ⁺] ⁺	381.0045	381.0041					
[Gd ³⁺ + 2 × glycine + glycerol – 2 × H ⁺] ⁺	398.0199	398.0195					
[Gd ³⁺ + glycine + 2 × glycerol – 2 × H ⁺] ⁺	415.0352	415.0348					
$Gd_2(SO_4)_3 \cdot 8H_2O + glycine$							
[GdO]⁺	173.9190	173.9181					
[Gd ³⁺ + glycine + glycerol – 2 × H ⁺] ⁺	322.9878	322.9866					
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0017					
[Gd ³⁺ + 3 × glycine – 2 × H ⁺] ⁺	381.0045	381.0030					
[Gd ³⁺ + 2 × glycine + glycerol – 2 × H ⁺] ⁺	398.01985	398.0183					
[Gd ³⁺ + glycine + 2 × glycerol – 2 × H ⁺] ⁺	415.0352	415.0337					
GdBr ₃ ·13H ₂ O + glycine							
	173.9190	173.9184					
[Gd ³⁺ + glycine + glycerol – 2 × H ⁺] ⁺	322.9878	322.9865					
$[Gd^{3+} + 2 \times glycerol - 2 \times H^+]^+$	340.0031	340.0017					
[Gd ³⁺ + 3 × glycine – 2 × H ⁺] ⁺	381.0045	381.0030					
[Gd ³⁺ + 2 × glycine + glycerol – 2 × H ⁺] ⁺	398.0199	398.0183					
[Gd ³⁺ + glycine + 2 × glycerol – 2 × H ⁺] ⁺	415.0352	415.0338					
Gd(OAc) ₃ ·4H ₂ O + glycine							
[GdO]⁺	173.9190	173.9182					
[Gd ³⁺ + glycine + glycerol – 2 × H ⁺] ⁺	322.9878	322.9863					
[Gd ³⁺ + 2 × glycerol – 2 × H ⁺] ⁺	340.0031	340.0020					
[Gd ³⁺ + 3 × glycine – 2 × H ⁺] ⁺	381.0045	381.0031					
[Gd ³⁺ + 2 × glycine + glycerol – 2 × H ⁺] ⁺	398.0199	398.0186					
[Gd ³⁺ + glycine + 2 × glycerol – 2 × H ⁺] ⁺	415.0352	415.0340					

Table S2: ¹H, ¹³C, and ¹⁵N DNP enhancement factors, build-up time constants, contribution factors, and overall sensitivity improvements for 1.5 M $2^{-13}C$, ¹⁵N-glycine in 6/3/1 v/v/v glycerol-d₈/D₂O/H₂O at ~105 K at 14.1 T, for various concentrations of Gd(NO₃)₃

			— /		
[Gd(NO ₃) ₃] / mM	Nuclide	3	T _{B,ON} / S	θ	εθ
2	¹ H	−1.8 ± 0.1	22.0 ± 0.2	1.03 ± 0.04	-3.2 ± 0.2
	¹³ C	−4.1 ± 0.1	1187 ± 112		-4.5 ± 0.4
	¹⁵ N	_a	_a		_a
10	¹ H	−2.7 ± 0.1	9.7 ± 0.7	0.69 ± 0.03	-4.8 ± 0.3
	¹³ C	-14 ± 0.2	442 ± 18		−17 ± 1
	¹⁵ N	−24 ± 3	1426 ± 135		-30 ± 4
20	¹ H	-4.5 ± 0.1	4.8 ± 0.2	0.43 ± 0.02	-7.2 ± 0.3
	¹³ C	-23 ± 3	222 ± 7		-24 ± 3
	¹⁵ N	−27 ± 2	304 ± 31		-47 ± 5
40	¹ H	-2.8 ± 0.3	1.8 ± 0.3	0.26 ± 0.04	-4.4 ± 0.9
	¹³ C	-15 ± 2	114 ± 9		-13 ± 3
	¹⁵ N	-37 ± 4	124 ± 6		-61 ± 12
60	¹ H	-2.0 ± 0.3	1.3 ± 0.5	0.20 ± 0.01	-2.8 ± 0.6
	¹³ C	-6.5 ± 1.0	67 ± 11		-5.8 ± 1.1
	¹⁵ N	-33 ± 3	58 ± 6		-60 ± 12
100	¹ H	-2.7 ± 0.6	0.7 ± 0.2	0.07 ± 0.01	-1.8 ± 0.5
	¹³ C	−12 ± 1	36 ± 5		−5.1 ± 0.6

^a Not measured.

Table S3: Electron spin-lattice and spin-spin relaxation times of various Gd(III) compounds and concentrations in 3/2 v/v glycerol/H₂O at 100 K (except where noted), measured at X-band and Q-band, with and without 1.5 M glycine.

Gd(III)	Conc. /	T _{1e} / ns				<i>T</i> _{2e} / ns			
compound	mM	X-band		Q-band		X-band		Q-band	
with (w) or	r without	w/o	W	w/o	W	w/o	W	w/o	W
(w/o) gl	ycine								
-	2	455 ±	472 ±	640 ±	545 ±	230 ±	231 ±	264 ±	253 ±
		6	3	31	1	2	1	3	2
	10	403 ±	433 ±	470 ±	470 ±	96.5 ±	115 ±	103.8	93 ±
	10	4	2	2	1	0.6	2	± 0.3	1
	20	312 ±	369 ±	398 ±	429 ±	72 ±	54 ±	59 ±	49 ±
	20	21	3	7	11	1	1	1	2
Gu(1003)3	40	228 ±	263 ±	383 ±	470 ±	20 ± /*	41 ± 3*	45 ± 6*	60 ± 1*
-	40	37	56	8	7	30 ± 4			
	60	148 ±	175 ±	332 ±	193 ±	48 ± 6*	53 ± 1*	40 ±	36 ± 1*
		95	85	23	38			14*	
	100	274 ±	237 ±	335 ±	231 ±	36 ±	28 ±	30 ±	44 ±
		17†	11†	4†	15†	2†	1†	6†	2†
GdCl ₃ 2	20	315 ±	417 ±	350 ±	443 ±	59 ±	66 ±	54.7 ±	52 ±
	20	7	2	2	2	1	1	0.2	2
Gd ₂ (SO ₄) ₃	10	347 ±	378 ±	394 ±	404 ±	66 ±	60 ±	64.5 ±	59 ±
	10	6	3	4	1	3	1	0.2	1
GdBr ₃	20	327 ±	331 ±	361 ±	362 ±	61 ±	48 ±	48 ±	48 ±
	20	8	4	11	3	5	1	2	2
Gd(OAc) ₃	20	313 ±	295 ±	346 ±	391 ±	58 ±	58 ±	50 ±	55 ±
	20	10	3	1	2	2	1	2	1

* Measured at 80 K

[†] Measured at 30 K

Table S4: ¹H, ¹³C, and ¹⁵N DNP enhancement factors, build-up time constants, contribution factors, and overall sensitivity improvements for 1.5 M 2^{-13} C, ¹⁵N-glycine in 6/3/1 v/v/v glycerol-d₈/D₂O/H₂O at ~105 K at 14.1 T, for various Gd(III)-based polarizing agents.

Gd(III)	Nuclide	3	T _{B,ON} / s	θ	εθ
compound					
	¹ H	-4.5 ± 0.1	4.8 ± 0.2	0.43 ± 0.02	-7.2 ± 0.3
Gd(NO ₃) ₃	¹³ C	-23 ± 3	222 ± 7		−24 ± 2
	¹⁵ N	−27 ± 2	304 ± 31		-48 ± 5
	¹ H	-4.7 ± 0.3	4.6 ± 0.2	0.44 ± 0.02	-7.8 ± 0.6
GdCl₃	¹³ C	−20 ± 1	244 ± 8		-21 ± 3
	¹⁵ N	-30 ± 1	331 ± 14		−51 ± 3
	¹ H	−3.1 ± 0.4	4.2 ± 1.0	0.39 ± 0.02	-4.8 ± 0.8
$Gd_2(SO_4)_3$	¹³ C	−17 ± 1	253 ± 15		−15 ± 2
	¹⁵ N	−27 ± 2	405 ± 51		-36 ± 4
	¹ H	-3.4 ± 0.2	3.8 ± 0.2	0.44 ± 0.02	-6.3 ± 0.8
GdBr ₃	¹³ C	−13 ± 1	184 ± 11		−15 ± 1
	¹⁵ N	−29 ± 1	278 ± 28		-53 ± 5
Gd(OAc) ₃	¹ H	-0.39 ± 0.03	2.9 ± 0.6	0.46 ± 0.02	-0.85 ± 0.10
	¹³ C	-9.7 ± 0.2	162 ± 24		−13 ± 2
	¹⁵ N	−17 ± 1	229 ± 14		-35 ± 3

Figure S2: Echo-detected field-swept EPR spectra of various concentrations of $Gd(NO_3)_3$ in 3/2 v/v glycerol/H₂O with 1.5 M glycine, measured at (a) X-band and (b) Q-band.

Figure S3: Echo-detected field-swept EPR spectra of 3/2 v/v glycerol/H₂O, measured at (a) X-band and (b) Q-band at 30 K.

Figure S4: Fits to the echo detected field swept X-band and Q-band EPR spectra, along with contour plots, for 25 μ M of all Gd(III) compounds in 3/2 v/v glycerol/H₂O at 10 K.

Figure S5: Fits to the echo detected field swept X-band and Q-band EPR spectra, along with contour plots, for 25 μ M of all Gd(III) compounds in 3/2 v/v glycerol/H₂O at 10 K, with 1.5 M glycine added.