Unravelling electronic structure, bonding and magnetic properties in inorganic dysprosocene analogues $[Dy(E_4)_2]^{2-}$ (where E= N, P, As, CH)

Ibtesham Tarannum, Saurabh Kumar Singh*

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India-502284

Table of Contents

Figure S1: DFT optimized geometry of [Dy(E ₄) ₂] ⁻ complexes at DKH/BP86 level of theory5
Table S1: Comparison of selected structural parameters of a previously reported complex $[Dy(N_5)]^+$ complex
Table S2: Comparison of selected structural parameters of complexes 1-5 optimized at BP86 level of theory
Table S3: EDA analysis for $[Dy(E_4)_2]^-$ complexes. All the values provided here are in the kcal.mol ⁻¹
Table S4: Percentage contribution of the decomposed energies to the total bonding energy for $[Dy(E_4)_2]^-$ complexes
Table S5: EDA analysis of complexes 1-5 with fragmentation scheme $((Dy(E_4))^+ + (E_4)^{2-})$. All the values provided here are in the kcal.mol ⁻¹
Figure S2: DFT computed trends in the total binding energy for complexes 1-5 using fragmentation scheme $((Dy(E_4))^+ + (E_4)^2)$
Figure S3: The first four electron deformation densities, $\Delta E_{orb(n)}$, along with their eigenvalues for complexes a) 1, b) 2, c) 3. The $\Delta E_{orb(n)}$ energies are in kcal/mol
Figure S4: The first four electron deformation densities, $\Delta E_{orb(n)}$, along with their eigenvalues for complexes a) 4, b) 5. The $\Delta E_{orb(n)}$ energies are in kcal/mol
Table S6: The shape of the first three highest electron deformation densities, $\Delta E_{orb(1)-(3)}$ for 1-5 with fragmentation scheme ((Dy(E ₄)) ⁺ + (E ₄) ²⁻). Isosurface values are 0.0003 au. The ΔE_{orb} energies are in kcal.mol ⁻¹
Table S7. Percentage metal contribution (%) to Dy-E bonding NLMOs in complexes 1-5. Themajor dominating compositions are in bold
Table S8. DFT computed the NPA population of various valence Dy(III) orbitals in complexes 1-5.

Table S9: AILFT computed the Slater Condon parameters F^2 , F^4 , and F^6 , the one-electron effective parameters for spin-orbit coupling (ζ) for complexes 1-5 at NEVPT2 level of theory.

The values in the parenthesis are the CASSCF computed values. All the values provided here are in the cm ⁻¹ 11
Table S10: AILFT computed the Racah parameters E ¹ , E ² , and E ³ for complexes 1-5 at the NEVPT2 level of theory. The values in the parenthesis are the CASSCF computed values. All the values provided here are in the cm ⁻¹
Table S11: Reduction (%) in Slater Condon parameter F ² , F ⁴ , and F ⁶ and Racah parameters E ¹ , E ² , and E ³ for complexes 1-5 at NEVPT2 level of theory. The values in the parenthesis are the CASSCF computed values. 12
Figure S5: AILFT computed trends in the reduction (%) in Racah parameters (E ¹ , E ² , E ³) (left) and Spin-Orbit Coupling parameters (ζ) (right) for complexes 1-5 at NEVPT2 level of theory.
Figure S6: AILFT computed splitting pattern of 4 <i>f</i> orbitals in complexes 1-5 at NEVPT2 level of theory
Figure S7: SINGLE_ANISO computed g-tensor orientation in complexes 1-514
Figure S8: SINGLE_ANISO computed blockade barrier for the complexes (a) 2, (b) 3, (c) 4, (d) 5
Table S12: SINGLE_ANISO computed barrier height (U_{cal}), theoretically calculated U_{eff} and the three majorly contributed KDs
Table S13: SINGLE_ANISO computed the properties of the two lowest Kramers' doublets of the ⁶ H _{15/2} multiplet in complexes 1-5 in the absence of spin-orbital coupling (SOC-off) for N, P, and As atoms
Table S14: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complex 1. All the values are reported here in cm ⁻¹ 15
Table S15: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complexes 2 and 3. All the values are reported herein cm ⁻¹ .
Table S16: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complexes 4 and 5. All the values are reported herein cm ⁻¹ . 17
Figure S9: NEVPT2 computed eight low-lying KDs (left) and AILFT computed splitting pattern of 4 <i>f</i> orbitals (right) for complexes 1, [Dy(Cb) ₂] ⁻ , [Dy(Cp*) ₂] ⁺ 17
Figure S10: NEVPT2 computed blockade barrier for the reversal of magnetization of complexes 1 (a), $[Dy(Cb)_2]^-$ (b), $[Dy(Cp^*)_2]^+$ (c)
Table S17: NEVPT2 computed 224 roots of quartet for 1. All the values are reported herein cm ⁻¹ . 19

Table S18: NEVPT2 computed 224 roots of quartet for 2. All the values are reported herei cm ⁻¹ .	n 0
Table S19: NEVPT2 computed 224 roots of quartet for 3. All the values are reported herei cm ⁻¹ .	n 1
Table S20: NEVPT2 computed 224 roots of quartet for 4. All the values are reported herei cm ⁻¹ .	n 2
Table S21: NEVPT2 computed 224 roots of quartet for 5. All the values are reported herei cm ⁻¹ .	n 3
Table S22: DFT-optimized geometry coordinates.	4
EDA Input File2	5
CASSCF Input File2	6

Figure S1: DFT optimized geometry of $[Dy(E_4)_2]^-$ complexes at DKH/BP86 level of theory.

Table S1: Comparison of selected structural parameters of a previously reported complex $[Dy(N_5)]^+$ complex.

$[Dy(N_5)_2]^+$	Reported *	Optimized #
Avg. N-N (Å)	1.332	1.338
Dy-L _c (Å)	2.225	2.242
$\angle L_{cent}$ -Dy- L_{c} (°)	153.5	158.2

*Reported Geometry (*Inorg. Chem. 2019, 58, 14046–14057*) calculation was performed using ORCA/4.1 at meta-GGA TPSSh level of theory and SARC2-ZORA-QZV for Dy and ZORA-def2-TZVP for Nitrogen(N).

[#]Calculation was performed using ORCA/4.2.1 at GGA BP86 level of theory and SARC2-DKH-TZVP for Dy DKH-def2-SVP for Nitrogen(N).

Table S2: Comparison of selected structural parameters of complexes 1-5 optimized at BP86 level of theory.

Complexes	Bond Le	Bond Angle (°)			
	Avg. E-E	Dy-L _{cent}	L _{cent} -Dy-L _{cent}		
1	1.393	2.182	180.0		
2	2.200	2.470	179.9		
3	3 2.416		149.0		
4	1.807	2.412	177.2		
5	1.927	2.367	155.1		
[Dy(Cb) ₂] ⁻	1.444	2.339	179.9*		
[Dy(Cp*) ₂] ⁺	1.442	2.273	148.0		
*data taken from ref; <i>Dalton Trans.</i> , 2023, 52 , 15576-15589					

Parameters	1	2	3	4	5
Pauli Energy (ΔE _{Pauli})	207.0	172.4	208.5	176.5	202.0
Electrostatic Energy (ΔE_{elec})	-1475.5	-1134.4	-1126.4	-1245.5	-1234.5
Orbital Interaction (ΔE_{orb})	-469.1	-587.8	-624.0	-568.9	-608.7
Dispersion (ΔE_{disp})	-2.5	-4.5	-5.1	-4.2	-4.1
Total Bonding Energy (ΔE_{int})	-1740.1	-1554.3	-1547.1	-1642.0	-1645.3

Table S3: EDA analysis for $[Dy(E_4)_2]^-$ complexes. All the values provided here are in the kcal.mol⁻¹.

Table S4: Percentage contribution of the decomposed energies to the total bonding energy for $[Dy(E_4)_2]^-$ complexes.

Complexes	$\Delta E_{\mathrm{Pauli}}$ (%)	$\Delta E_{\rm elec}$ (%)	$\Delta E_{ m orb}$ (%)	ΔE_{disp} (%)	
1	11.9	84.8	27.0	0.1	
2	11.1	73.0	37.8	0.3	
3	13.5	72.8	40.3	0.3	
4	10.8	75.9	34.6	0.3	
5	12.3	75.0	37.0	0.3	
% contribution to total binding energy = $(E/E_{tot}) * 100$					

Table S5: EDA analysis of complexes 1-5 with fragmentation scheme $((Dy(E_4))^+ + (E_4)^2)$. All the values provided here are in the kcal.mol⁻¹.

Parameters	1	2	3	4	5
Pauli Repulsion (ΔE _{Pauli})	123.2	107.9	137.1	112.7	133.0
Electrostatic Energy (ΔE_{elec})	-390.3	-293.0	-300.9	-321.3	-324.3
Orbital Interaction (ΔE_{orb})	-133.1	-134.6	-142.4	-134.2	-142.9
Dispersion (ΔE_{disp})	-1.7	-4.5	-6.7	-3.3	-4.1
Total Bonding Energy (ΔE_{int})	-401.9	-324.2	-312.8	-346.2	-338.3

Figure S2: DFT computed trends in the total binding energy for complexes 1-5 using fragmentation scheme $((Dy(E_4))^+ + (E_4)^{2-})$.

Figure S3: The first four electron deformation densities, $\Delta E_{orb(n)}$, along with their eigenvalues for complexes a) **1**, b) **2**, c) **3**. The $\Delta E_{orb(n)}$ energies are in kcal/mol.

Figure S4: The first four electron deformation densities, $\Delta E_{orb(n)}$, along with their eigenvalues for complexes a) **4**, b) **5**. The $\Delta E_{orb(n)}$ energies are in kcal/mol.

Table S6: The shape of the first three highest electron deformation densities, $\Delta E_{orb(1)-(3)}$ for 1-5 with fragmentation scheme ((Dy(E₄))⁺ + (E₄)²⁻). Isosurface values are 0.0003 au. The ΔE_{orb} energies are in kcal.mol⁻¹.

Complexes	$\Delta E_{orb(1)}$	$\Delta E_{orb(2)}$	$\Delta E_{orb(3)}$
1			↓
		X	X
		2	
			$\Delta \alpha$
	$\Delta \rho_{(\pi)}$	$\Delta \rho_{(\pi)}$ $\Delta F := 17 1 \cdot \mathbf{v}_1 = 1$	$\Delta E_{\text{orb}(1)} = -7.5: v_1 $
	$\Delta E_{\text{orb}(1)} = -1/.1; V_1 = -0.25$	0.25	=-0.13

Complexes	%M	M (s+p)	M (d)	M (f)
1	8.4	1.6	6.6	0.2
2	9.7	1.1	6.7	1.9
3	10.9	0.4	8.0	2.4
4	8.4	0.9	6.2	1.3
5	8.2	0.8	5.5	1.9

Table S7. Percentage metal contribution (%) to Dy-E bonding NLMOs in complexes 1-5. The major dominating compositions are in bold.

Table S8. DFT computed the NPA population of various valence Dy(III) orbitals in complexes 1-5.

Complexes	4f	5d	6р
1	9.07	0.88	0.03
2	9.06	1.04	0.06
3	9.03	1.28	0.03
4	9.05	0.96	0.08
5	9.03	1.12	0.05

Table S9: AILFT computed the Slater Condon parameters F^2 , F^4 , and F^6 , the one-electron effective parameters for spin-orbit coupling (ζ) for complexes **1-5** at NEVPT2 level of theory. The values in the parenthesis are the CASSCF computed values. All the values provided here are in the cm⁻¹.

	Dy(III) ion	1	2	3	4	5
F ²	109690.9	107521.2	107443.4	107263.5	107380.8	107193.9
	(121962.8)	(120860.3)	(120938.3)	(120867.9)	(120884.0)	(120794.4)
F ⁴	70551.8	70173.3	70136.7	70125.3	70173.6	70213.5
	(76517.7)	(75631.5)	(75740.7)	(75725.1)	(75680.0)	(75641.6)
\mathbf{F}^{6}	55412.5	54747.9	54859.3	54819.6	54814.2	54755.1
	(55041.9)	(54465.2)	(54507.2)	(54490.4)	(54477.4)	(54447.3)
ζ	1742.2	1733.7	1732.3	1731.4	1732.3	1731.2

Table S10: AILFT computed the Racah parameters E^1 , E^2 , and E^3 for complexes **1-5** at the NEVPT2 level of theory. The values in the parenthesis are the CASSCF computed values. All the values provided here are in the cm⁻¹.

	Dy(III) ion	1	2	3	4	5
E1	7129.0 (7682.6)	7025.0 (7606.2)	7024.8 (7612.7)	7017.1 (7609.4)	7022.2 (7608.5)	7014.9 (7603.6)
E ²	38.4 (42.6)	37.4 (42.3)	37.4 (42.3)	37.3 (42.3)	37.3 (42.3)	37.2 (42.3)

10 | Page

E ³	713.8	699.7	698.6	697.5	698.4	697.4	
	(817.2)	(809.7)	(810.3)	(809.9)	(810.0)	(809.3)	

Table S11: Reduction (%) in Slater Condon parameter F^2 , F^4 , and F^6 and Racah parameters E^1 , E^2 , and E^3 for complexes **1-5** at NEVPT2 level of theory. The values in the parenthesis are the CASSCF computed values.

	F ² (%)	F ⁴ (%)	F ⁶ (%)	ζ(%)	E ¹ (%)	E ² (%)	E ³ (%)	
1	2.0 (0.9)	0.5 (1.2)	1.2 (1.0)	0.5	1.5 (1.0)	2.7 (0.8)	2.0 (0.9)	
2	2.0 (0.8)	0.6 (1.0)	1.0 (1.0)	0.6	1.5 (0.9)	2.7 (0.8)	2.1 (0.8)	
3	2.2 (0.9)	0.6 (1.0)	1.1 (1.0)	0.6	1.6 (1.0)	2.9 (0.8)	2.3 (0.9)	
4	2.1 (0.9)	0.5 (1.1)	1.1 (1.0)	0.6	1.5 (1.0)	2.8 (0.8)	2.1 (0.9)	
5	2.3 (1.0)	0.5 (1.1)	1.2 (1.1)	0.6	1.6 (1.0)	3.1 (0.9)	2.3 (1.0)	
Reduction (%) = $[1 - (complex/free-ion)] * 100$								

Figure S5: AILFT computed trends in the reduction (%) in Racah parameters (E^1 , E^2 , E^3) (left) and Spin-Orbit Coupling parameters (ζ) (right) for complexes 1-5 at NEVPT2 level of theory.

Figure S6: AILFT computed splitting pattern of 4*f* orbitals in complexes 1-5 at NEVPT2 level of theory.

Figure S7: SINGLE_ANISO computed g-tensor orientation in complexes 1-5

Figure S8: SINGLE_ANISO computed blockade barrier for the complexes (a) 2, (b) 3, (c) 4, (d) 5.

Complexes	U _{cal} (K)	U _{eff} (K)	% contribution from KDs
1	2270.1	2416.0	40% KD5 + 39% KD6 + 30% KD8
2	1213.9	1355.0	36% KD6 + 26% KD7 + 27% KD8
3	1104.4	1175.0	19% KD5 + 31% KD6 + 27% KD8
4	1849.3	1766.0	53% KD5 + 32% KD6 + 26% KD8
5	1509.9	1366.0	21% KD5 + 18% KD6 + 16% KD7

Table S12: SINGLE_ANISO computed barrier height (U_{cal}), theoretically calculated U_{eff} and the three majorly contributed KDs.

Table S13: SINGLE_ANISO computed the properties of the two lowest Kramers' doublets of the ${}^{6}\text{H}_{15/2}$ multiplet in complexes 1-5 in the absence of spin-orbital coupling (SOC-off) for N, P, and As atoms.

	KD	E / K	g _{xx}	$\mathbf{g}_{\mathbf{y}\mathbf{y}}$	g _{zz}	θ	$m_{ m J}$	U _{cal} /K
1	KD1	0.0	0.000	0.000	19.776	-	$ \pm 15/2\rangle$	2805.1
	KD2	1137.7	0.011	0.011	16.919	0.9	$ \pm 13/2\rangle$	
2	KD1	0	0.000	0.000	19.768	-	$ \pm 15/2\rangle$	1032.8
	KD2	473.5	0.001	0.001	17.034	0.0	±13/2⟩	
3	KD1	0.0	0.000	0.000	19.757	-	$ \pm 15/2\rangle$	953.9
	KD2	334.2	0.000	0.000	17.066	0.1	$ \pm 13/2\rangle$	
4	KD1	0.0	0.000	0.000	19.771	-	$ \pm 15/2\rangle$	1833.5
	KD2	643.8	0.007	0.007	17.022	1.7	$ \pm 13/2\rangle$	
5	KD1	0	0.000	0.000	19.746	-	$ \pm 15/2\rangle$	1514.8
	KD2	490.0	0.018	0.025	16.749	0.2	±13/2⟩	

Table S14: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complex **1**. All the values are reported here in cm⁻¹.

1						
Term	Spin-free states	Spin- orbit states				
6H	0.0	0.0				
	0.1	7/5.6				
	1009.6	1055.2				
	1009.6	1168.2				
	1432.5	1355.83				
	1486.5	1621.47				

	1488.9	1897.36
	1511.9	2073.31
	2144.9	
	2148.5	
	2276.3	
⁶ F	7194.2	
	7198.1	
	7458.4	
	7492.4	
	7822.0	
	7851.2	
	7851.4	
6P	28635.1	
	30800.2	
	30810.4	

Table S15: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complexes 2 and 3. All the values are reported herein cm⁻¹.

2			3		
Spin- orbit states	Spin-free states	Term	Spin-free states	Spin- orbit states	
0.0	0.0	6H	0.0	0.0	
345.7	0.3		1.5	240.4	
501.5	572.7		377.6	409.7	
612.6	576.3		386.9	550.1	
735.5	578.6		534.8	679.6	
867.1	586.4		588.6	789.2	
999.4	724.4		709.9	890.4	
1082.3	871.9		831.6	928.7	
	1056.2		931.7		
	1105.2		942.1		
	1175.1		979.4		
	6568.1	⁶ F	6474.9		
	6601.4		6537.8		
	6660.0		6554.2		
	6719.9		6562.2		
	6748.5		6636.2		
	6871.1		6746.3		
	6872.2		6758.6		
	28531.5	6 P	28438.0		
	29579.3		29381.4		
	29679.0		29498.0		

4			5	5
Spin-	Spin-free	Term	Spin-free	Spin-
orbit	states		states	orbit
states				states
0.0	0.0	6H	0.0	0.0
261.4	0.0		0.5	350.3
488.7	420.9		527.6	523.4
681.9	420.9		561.8	695.3
840.4	735.3		602.3	894.4
972.8	735.4		667.5	1078.5
1061.4	959.6		997.7	1229.3
1101.7	965.3		1151.7	1330.3
	1099.9		1329.6	
	1103.6		1358.7	
	1141.0		1432.6	
	6717.1	6F	6552.2	
	6758.0		6781.8	
	6760.4		6828.9	
	6879.1		6852.5	
	6883.1		6901.8	
	7063.8		7059.8	
	7063.8		7066.6	
	29099.4	6P	28427.5	
	30447.9		29583.5	
	30457.0		30003.1	

Table S16: NEVPT2 computed 21 roots of sextet states along with eight low-lying spin-orbit states for complexes **4** and **5**. All the values are reported herein cm⁻¹.

Figure S9: NEVPT2 computed eight low-lying KDs (left) and AILFT computed splitting pattern of 4f orbitals (right) for complexes **1**, $[Dy(Cb)_2]^-$, $[Dy(Cp^*)_2]^+$.

Figure S10: NEVPT2 computed blockade barrier for the reversal of magnetization of complexes 1 (a), $[Dy(Cb)_2]^-$ (b), $[Dy(Cp^*)_2]^+$ (c).

1				
Spin-free State				
24055.3	27937.1	33822.0	53170.3	70800.9
24058.4	28881.1	33823.8	53399.4	71235.2
24316.5	28881.1	33926.4	53462.5	71235.2
24316.5	29674.5	33926.7	53463.3	71284.2
24456.0	29674.5	34134.1	53970.4	71285.5
24488.2	30013.8	34137.1	53973.4	71479.6
24656.6	30014.0	34867.3	54142.1	71504.6
24692.8	30108.9	34880.2	54150.0	72282.2
24696.6	30109.3	35109.7	54176.4	72621.2
24719.1	30270.4	35183.4	54458.9	72625.0
25098.0	30270.4	35204.0	54459.2	75078.5
25107.3	30398.0	35309.2	54779.4	75698.4
25113.3	30406.8	35311.6	54779.4	75705.4
25117.1	30503.3	35971.1	58331.8	77324.5
25207.6	30523.1	36275.1	58334.6	77331.5
25282.3	30592.2	36287.3	58340.3	80204.2
25335.3	30593.5	36313.0	58376.1	80242.0
25428.5	30694.1	36313.2	58423.5	80254.9
25430.1	30694.9	40610.8	58481.8	80255.0
25431.8	30748.1	40619.0	58482.9	80308.3
25436.5	30767.9	41566.7	58777.5	80404.3
25439.1	30835.4	41640.5	58778.2	80405.4
25612.8	30972.4	41697.0	59214.5	81188.1
25638.1	32197.1	42013.8	59214.5	81188.1
25638.1	32263.6	42014.0	59830.4	82286.5
25773.0	32264.2	43114.0	59830.6	82286.7
25845.4	32448.6	43186.7	59970.7	82378.3
25849.5	32465.9	43191.2	59970.7	82378.3
25889.3	32504.3	43434.1	60710.2	87876.0
25889.8	32504.8	43503.3	60720.7	87886.4
26156.6	32643.6	43702.1	62832.3	88547.9
26195.1	32643.7	43702.5	65361.0	88996.0
26344.2	32657.3	43886.6	65410.9	89180.5
26612.4	32657.3	43887.3	66956.2	90072.7
26613.3	32738.9	44045.2	67376.8	90072.8
26640.7	32739.4	44045.2	67385.3	94640.6
27233.3	32777.3	44824.9	70446.3	95244.7
27370.6	32777.3	44825.5	70570.6	95251.8
27521.8	32817.7	52082.8	70593.2	95772.5
27619.3	32817.7	52083.1	70614.7	95860.7
27638.3	33251.1	52791.7	70615.0	96477.0
27638.4	33252.4	52792.2	70661.1	96477.3
27643.6	33559.1	52879.3	70661.6	96537.4
27654.2	33643.4	52946.5	70722.3	96537.7
27929.6	33643.4	53166.8	70800.8	

Table S17: NEVPT2 computed 224 roots of quartet for 1. All the values are reported herein	1 cm ⁻¹ .
---	----------------------

2				
Spin-free State				
24037.7	27336.2	33065.5	52732.7	70297.1
24051.4	27637.0	33075.4	52777.1	70380.6
24051.6	27637.0	33100.8	52811.7	70380.7
24208.3	29413.9	33109.3	52814.9	70393.8
24208.6	29413.9	33133.6	52922.2	70394.5
24306.9	29566.4	33190.1	52959.4	70672.8
24313.7	29567.1	33866.0	53088.6	70728.1
24318.0	29596.2	33928.2	53117.7	71101.6
24360.8	29601.2	34182.9	53199.4	71160.2
24383.6	29611.1	34836.9	53270.9	71193.0
24401.9	29613.0	34881.6	53277.6	74807.4
24466.1	29670.6	34906.8	53494.9	75081.0
24498.3	29672.3	34928.4	53534.4	75146.2
24539.1	29695.1	35043.3	57964.2	75949.3
24549.5	29730.6	35266.8	57965.1	75958.8
24611.2	29805.2	35268.0	58004.0	79880.2
24620.8	29815.5	35364.0	58019.1	79889.8
24625.0	29844.6	35379.0	58025.3	79914.5
24646.9	30038.4	40399.1	58081.1	79924.3
24652.7	30038.5	40467.3	58084.2	79987.3
24738.8	30040.8	40689.4	58216.3	80068.5
24795.8	30093.3	40758.6	58216.3	80077.4
24815.8	30130.5	40908.9	58419.2	80383.5
24837.5	31716.9	41044.5	58419.2	80385.1
24846.3	31728.6	41047.2	58662.8	80809.6
24888.0	31738.8	42748.0	58662.9	80809.7
24929.2	31764.6	42772.3	58777.3	81039.6
25131.0	31774.7	42809.4	58777.3	81039.7
25146.1	31774.7	42891.7	60406.9	87896.2
25156.0	31792.9	42910.2	60508.9	87986.9
25262.9	31795.2	43022.5	61583.5	88098.5
25366.1	31795.2	43025.0	65298.1	88417.3
25592.8	31826.6	43137.9	65323.4	88473.5
25799.1	31827.9	43140.1	66259.2	89169.7
26002.5	31838.5	43261.9	66321.8	89173.6
26046.0	31838.8	43262.0	66338.4	94296.0
27048.9	31857.6	43559.9	69066.2	94475.4
27054.3	31859.3	43559.9	70108.5	94527.9
27059.7	31865.3	52013.7	70109.0	94769.2
27078.2	31865.4	52015.3	70110.7	94802.0
27113.6	32842.4	52453.3	70121.9	95039.5
27119.7	32843.9	52568.9	70126.5	95040.4
27135.3	32912.6	52573.0	70200.5	95200.0
27136.6	32912.7	52629.3	70203.0	95200.2
27336.2	33030.3	52640.5	70296.5	

Table S18: NEVPT2 computed 224 roots of quartet for 2. All the values are reported herein cm⁻¹.

3				
Spin-free State				
23619.3	27297.2	32940.4	52570.1	70168.5
23953.1	27456.4	32961.6	52613.6	70176.7
23953.3	27456.4	32966.1	52711.1	70177.7
23965.7	29376.2	32985.6	52713.1	70215.0
24116.2	29376.4	33015.4	52746.1	70215.2
24117.7	29488.2	33023.0	52775.8	70530.7
24187.3	29489.4	33745.3	52881.6	70564.4
24196.0	29502.8	33797.2	52941.7	70857.0
24199.4	29509.3	34046.7	53022.2	70934.9
24244.6	29516.4	34768.2	53042.8	70946.8
24272.6	29524.5	34829.2	53047.5	74665.2
24394.7	29568.7	34842.7	53290.4	74915.3
24407.6	29583.8	34859.6	53364.2	74974.8
24422.9	29617.4	34885.1	57822.9	75695.8
24432.7	29637.8	35060.5	57822.9	75703.0
24452.3	29651.7	35087.6	57887.6	79702.0
24471.1	29678.4	35249.7	57909.2	79705.4
24471.4	29681.1	35264.4	57911.1	79793.9
24536.2	29933.7	40367.8	57978.3	79812.7
24577.1	29939.3	40463.8	57979.1	79852.4
24580.7	29940.5	40494.7	58093.4	79950.4
24682.4	29989.8	40599.7	58094.2	79970.8
24693.9	30001.0	40739.6	58249.4	80200.3
24703.0	31649.8	40899.5	58249.8	80202.2
24759.5	31650.6	40928.9	58438.8	80511.2
24888.1	31670.6	42685.0	58438.8	80512.1
24919.0	31671.8	42704.5	58606.1	80815.1
25129.3	31672.3	42718.5	58606.1	80815.1
25237.0	31672.4	42770.7	60299.5	87814.9
25300.0	31697.2	42798.0	60385.6	87866.2
25460.1	31704.1	42888.0	61362.0	87940.3
25545.8	31704.5	42888.2	65197.1	88187.8
25598.9	31704.9	43010.1	65223.2	88259.9
25854.9	31707.5	43011.8	66050.8	88910.2
25856.1	31716.7	43156.7	66132.2	88914.3
26092.0	31717.6	43156.7	66159.5	94163.6
26556.0	31731.1	43367.8	68941.3	94276.9
26742.6	31732.5	43367.8	69894.7	94291.0
26939.0	31732.9	51931.5	69931.9	94503.2
27050.0	31733.8	51932.3	69939.2	94538.3
27141.8	32782.6	52378.1	69949.8	94789.0
27148.4	32784.0	52494.9	69990.1	94793.9
27200.1	32821.5	52527.2	70053.8	94923.7
27203.6	32821.8	52535.7	70058.4	94924.2
27297.1	32933.6	52551.5	70145.1	

Table S19: NEVPT2 computed 224 roots of quartet for 3. All the values are reported herein cm⁻¹.

4					
Spin-free State					
24111.6	27680.9	33284.8	52779.5	70381.3	
24111.6	27953.3	33313.7	52792.1	70468.7	
24315.8	27953.3	33344.3	53081.3	70544.8	
24342.8	29546.4	33371.0	53082.4	70633.7	
24368.0	29546.5	33382.8	53242.8	70633.9	
24368.6	29774.8	33418.9	53244.1	70935.8	
24411.2	29774.9	34210.9	53383.0	70968.0	
24452.1	29782.3	34224.5	53442.3	71439.0	
24453.1	29784.9	34680.6	53489.3	71539.2	
24453.2	29786.2	34823.0	53493.1	71574.3	
24670.1	29787.2	35079.3	53622.0	74788.9	
24676.2	29886.0	35093.7	53834.4	75167.0	
24699.6	29887.1	35106.6	53985.6	75220.1	
24833.9	29944.5	35151.3	57999.5	76347.6	
24834.6	29962.9	35340.5	58002.6	76349.8	
24961.2	29974.7	35432.6	58051.2	79846.1	
24976.5	30075.9	35734.2	58082.3	79859.6	
25018.5	30081.4	35736.7	58093.5	79940.7	
25045.4	30193.0	40486.5	58188.0	79985.4	
25102.6	30230.0	40665.5	58189.1	80005.9	
25131.8	30276.4	40761.0	58365.0	80201.1	
25132.5	30282.2	41004.6	58365.1	80203.5	
25161.2	30343.5	41064.1	58607.0	80575.6	
25262.7	31947.7	41358.0	58607.1	80575.8	
25387.6	31949.0	41363.2	58927.8	81089.3	
25445.5	32012.7	42846.9	58927.8	81089.7	
25461.7	32015.8	42880.1	59217.0	81529.4	
25513.5	32020.2	42902.7	59217.0	81529.4	
25561.2	32020.2	43008.4	60411.6	87891.0	
25700.0	32028.2	43014.6	60486.3	87943.7	
25709.1	32042.9	43170.0	61981.7	88035.2	
25763.0	32044.1	43171.4	65246.6	88460.0	
25822.1	32069.4	43354.5	65249.4	88482.0	
25904.9	32069.9	43354.9	66529.4	89422.5	
25914.1	32081.2	43580.8	66559.8	89424.0	
25919.8	32081.6	43580.9	66618.8	94371.8	
26064.9	32134.7	43911.9	69533.6	94539.7	
26735.5	32134.7	43912.0	70183.1	94619.4	
26769.4	32142.4	51945.1	70188.4	94975.0	
26852.2	32142.4	51945.3	70189.2	94980.5	
27305.3	33039.2	52586.4	70211.5	95448.0	
27307.6	33039.5	52643.9	70219.7	95451.9	
27488.6	33089.8	52689.4	70281.7	95518.8	
27491.8	33090.5	52717.4	70281.8	95518.9	
27680.9	33256.0	52743.1	70379.0		

Table S20: NEVPT2 computed 224 roots of quartet for **4**. All the values are reported herein cm⁻¹.

5				
Spin-free State				
24069.9	27453.3	33139.2	52770.3	70293.9
24070.1	27893.1	33180.3	52774.4	70365.4
24271.4	27893.1	33223.7	52887.8	70384.5
24278.1	29438.1	33286.3	52897.4	70384.6
24383.0	29438.1	33302.0	53074.2	70415.8
24407.8	29610.2	33326.9	53087.2	70723.5
24415.2	29610.2	33903.0	53205.4	70748.7
24438.1	29617.2	34255.5	53312.6	71260.3
24511.9	29618.1	34390.3	53325.1	71274.3
24524.5	29774.4	34817.6	53336.6	71421.4
24548.3	29774.7	34841.6	53402.4	74665.3
24620.0	29786.3	34872.7	53723.4	74944.7
24707.5	29789.1	34953.7	53753.4	75191.9
24723.2	29845.1	35127.8	57833.0	76100.7
24731.3	29863.7	35416.3	57836.5	76104.5
24734.3	29913.7	35422.7	57973.8	79678.1
24781.1	29968.1	35539.4	57989.7	79696.2
24789.3	29977.6	35556.7	58027.1	79838.1
24789.7	30069.9	40192.3	58078.0	79887.1
24956.2	30120.7	40705.6	58087.4	79957.4
24977.8	30120.7	40774.1	58237.4	80024.7
25020.3	30187.3	40788.7	58238.4	80038.2
25058.8	30298.9	40984.5	58479.9	80391.7
25082.3	31772.7	41208.5	58480.0	80394.3
25087.8	31773.0	41210.1	58807.5	80966.8
25135.9	31873.8	42715.3	58807.5	80966.8
25153.5	31875.4	42716.9	58952.7	81217.9
25249.3	31875.4	42857.3	58953.9	81218.0
25312.8	31882.9	42899.9	60193.2	87560.7
25359.3	31912.4	43002.5	60557.1	87901.9
25369.9	31928.6	43078.7	61752.0	87906.4
25375.0	31929.7	43124.6	65164.7	88356.5
25542.4	31948.6	43207.2	65168.5	88455.0
25543.1	31957.5	43219.7	66242.0	89217.3
26009.1	31960.9	43375.0	66404.9	89249.9
26485.2	31966.7	43375.4	66542.6	94175.3
26550.0	32032.7	43773.7	69288.6	94340.6
26578.9	32033.1	43773.8	70057.3	94543.6
26595.8	32033.5	51897.0	70060.9	94751.0
26727.2	32033.8	51897.3	70064.9	94845.0
27012.2	32908.4	52432.4	70064.9	95133.1
27261.1	32911.9	52434.4	70091.9	95149.3
27264.9	32955.8	52561.3	70167.4	95298.0
27324.1	32957.2	52567.3	70171.8	95298.6
27451.7	33123.9	52617.4	70291.8	

Table S21: NEVPT2 computed 224 roots of quartet for 5. All the values are reported herein c	m^{-1}
---	----------

Table	S22:	DFT-o	ptimized	geometry	v coordinates.
-------	------	-------	----------	----------	----------------

		1	
Dy	0.0000000000000	0.0000000000000	0.0000000000000
Ν	0.237478000000	0.955323000000	2.183555000000
Ν	-0.953451000000	0.238222000000	2.182404000000
Ν	0.956073000000	-0.238222000000	2.180903000000
Ν	-0.235322000000	-0.954905000000	2.179571000000
Ν	-0.955825000000	0.233820000000	-2.181058000000
Ν	-0.231760000000	-0.956434000000	-2.183666000000
Ν	0.232215000000	0.955974000000	-2.179673000000
Ν	0.955825000000	-0.233820000000	-2.182365000000

		2	
Dy	0.00000000000000000	0.0000000000000	0.0000000000000
Р	1.364347000000	0.772382000000	-2.470035000000
Р	0.759113000000	-1.343829000000	-2.439751000000
Р	-1.364347000000	-0.772382000000	-2.470197000000
Р	-0.759458000000	1.343641000000	-2.439369000000
Р	-1.284933000000	-0.894153000000	2.470294000000
Р	-0.878738000000	1.267074000000	2.440409000000
Р	1.290245000000	0.894153000000	2.468615000000
Р	0.884003000000	-1.267670000000	2.438511000000

		3	
Dy	0.0000000000000	0.00000000000000000000000000000000000	0.0000000000000
As	-0.019870000000	-1.699453000000	-2.410430000000
As	-1.719218000000	0.017781000000	-2.442727000000
As	0.015488000000	1.698905000000	-2.416102000000
As	1.723600000000	-0.017233000000	-2.418255000000
As	1.231435000000	1.699614000000	2.072649000000
As	2.723129000000	0.009138000000	1.184388000000
As	1.251393000000	-1.698916000000	2.065738000000
As	-0.214755000000	-0.009835000000	2.979493000000

		4	
Dy	0.000000000000	0.0000000000000	0.000000000000
С	-1.180124000000	0.074436000000	-2.356261000000
С	0.042746000000	-1.167379000000	2.335341000000
Η	-2.272590000000	0.142828000000	-2.441060000000
Η	-0.021372000000	-2.263532000000	2.393825000000
Р	-0.085761000000	-1.359406000000	-2.468836000000
Р	-1.256371000000	0.082915000000	2.526708000000
С	1.180036000000	-0.074464000000	-2.354790000000
Η	2.272872000000	-0.143390000000	-2.430841000000
Р	0.085848000000	1.359434000000	-2.46912000000
С	0.183221000000	1.167450000000	2.328749000000
Η	0.251382000000	2.263713000000	2.379573000000

Р

1.495894000000

		5	
Dy	0.0000000000000	0.0000000000000	0.0000000000000
C	-0.028061000000	-1.221426000000	-2.286059000000
С	0.968759000000	1.221788000000	2.069668000000
Η	-0.055063000000	-2.320602000000	-2.341122000000
Η	0.997220000000	2.321369000000	2.114478000000
As	1.479037000000	-0.034525000000	-2.455145000000
As	2.374261000000	-0.010756000000	1.606113000000
С	0.029490000000	1.221246000000	-2.285961000000
Η	0.054281000000	2.320604000000	-2.337490000000
As	-1.480466000000	0.034705000000	-2.442105000000
С	0.954021000000	-1.221666000000	2.078558000000
Η	0.968829000000	-2.321186000000	2.131021000000
As	-0.317266000000	0.010634000000	2.838437000000

-0.082985000000

2.391714000000

EDA Input File

Task SinglePoint System Atoms coordinates End Charge -1.0 Engine ADF Basis Type TZ2P Core None End SpinPolarization 5.0 Fragments Region 1 =/path/adf.rkf Region_2 =/path/adf.rkf End Save TAPE15 Print ETSLOWDIN-Unrestricted Print NOCVHIRSHFELD XC Hybrid PBE0 **DISPERSION GRIMME3 BJDAMP** End Symmetry NOSYM Unrestricted Yes BeckeGrid Quality Good

End LOCORB END NumericalQuality Good FullFock Yes AOMat2File Yes SCF Iterations 800 End UnrestrictedFragments Yes ETSNOCV Enabled Yes End EndEngine eor

CASSCF Input File

!DKH2 DKH-def2-SVP slowconv tightscf autoaux

%pal nprocs 40 end

%Maxcore 6000

%basis newgto Dy "SARC-DKH2-TZVP" end end

%method SpecialGridAtoms 66 SpecialGridIntAcc 9 end

%cassef nel 9 norb 7 mult 6,4 nroots 21,224 actorbs forbs nevpt2 true maxiter 100 ci nguessmat 8000 maxiter 100 end

rel dosoc true gtensor true printlevel 3 NDoubGTensor 8 domagnetization true dosusceptibility true

SUSTempMIN 2.0 SUSTempMAX 300.0 SUSNPoints 100

MAGTemperatureMIN 2.0 MAGTemperatureMAX 5.0 MAGTemperatureNPoints 4

MAGFieldMIN 0.0 MAGFieldMAX 70000.0 MAGNpoints 15

end

ANISO doaniso true MLTP 2,2,2,2,2,2,2,2 TINT 0, 300, 100 HINT 0, 7.0, 10 TMAG 2.0, 3.0, 5.0 CRYS_element "Dy" CRYS_charge 3 PLOT true UBAR true end end

*xyz -1 6 Coord