Supporting Information (SI)

DFT Study on the Mechanism of Methanol Dehydrogenation over Ru_xP_y Surfaces

Hao Lu,^{a,} Yuan Zhong,^{a,} Yao Jie,^a Pan Yin,^a Tian-Yao Shen,^a Jing-Yi Guo,^a Wei

Zhang,^a Min Pu,^a Hong Yan,^{*a}

^a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding Authors:

yanhong@mail.buct.edu.cn (Hong Yan).

Contents

Title	Page
1. The structures of Ru, Ru ₂ P, RuP, RuP ₂ unit cells. (Figure S1)	S3
2. Energy test for <i>K</i> -point. (Table S1)	S3
3. Energy test for cut-off energy (ENCUT). (Figure S2)	S3
4. Energy test for the energy convergence criterion. (Table S2)	S4
5. Adsorption information for MD reaction intermediates on Ru(0001), $Ru_2P(210)$, $RuP(112)$, and $RuP_2(110)$. (Table S3-6)	S4-7
6. Top view of all the initial states (IS), the corresponding transition states (TS) and final states (FS) on Ru(0001), Ru ₂ P(210), RuP(112), and RuP ₂ (110), along with the adsorption energies (E_{ads}). (Figure S3-6)	S7-10
7. Screening of methanol adsorption sites on Ru(0001), Ru ₂ P(210), RuP(112), and RuP ₂ (110) surfaces (Figure S7)	S10
8. Reaction energy barriers for pathway 1-4 on Ru(0001), Ru ₂ P(210), RuP(112), and RuP ₂ (110). (Figure S8-12)	S11-13
9. Reaction free energy barriers for pathway 1-4 on Ru(0001), Ru ₂ P(210), RuP(112), and RuP ₂ (110). (Figure S13-16)	S13-15
10. The states of TDTS and TDI, the energies of TDTS and TDI, and the calculated E_a^{eff} of MD over the surfaces of Ru(0001), Ru ₂ P(210), RuP(112), and RuP ₂ (110). (Table S7)	S15
11. Comparison of previous DFT calculations works on the mechanism of MD reaction over metal-based catalysts (without support). (Table S8)	S15-16

1. The structures of Ru, Ru₂P, RuP, RuP₂ unit cells.

Figure S1. (a) Structure model of Cells. (b) Structures of Ru(0001), $Ru_2P(210)$, RuP(112), and $RuP_2(110)$.

2. Energy test for K-point.

As shown in Table S1, when the K-point is set to $3 \times 3 \times 1$, the adsorption energy (The test site is not the optimal adsorption site) is -0.565 eV, and when the K-point is increased to $5 \times 5 \times 1$, the DFT calculation results show that the adsorption energy has only a small change (0.001 eV). Therefore, in order to save computing resources, the K-point of $3 \times 3 \times 1$ is used to complete all calculations.

Table S1. Adsorption energy of Propane molecules on RuP(112) surface when K-

point are $3 \times 3 \times 1$ and $5 \times 5 \times 1$ (in eV).

K-pont	$E_{ m surface}$	$E_{adsorbate}$	$E_{adsorbate/surface}$	$E_{\rm ads}$
3×3×1	-229.549	-57.012	-287.126	-0.565
5×5×1	-229.549	-57.012	-287.127	-0.566

3. Energy test for cut-off energy (ENCUT).

In order to make reasonable use of computing resources, we tested the cutoff energy (ENCUT) required for the calculation. If the ENCUT value is too small, the system will be difficult to converge, and if it is too large, it will take longer to waste computing resources. As shown in Figure S2, for the system we want to study, when the ENCUT value is 450 eV, it can not only ensure the convergence of the system, but also save computing resources.

Figure S2. Take the energy E_0 of CH₃OH adsorbed on RuP(112) surface as an example for ENCUT test.

2. Energy test for the energy convergence criterion.

As shown in Table S2, when the energy convergence criterion is set to 0.05 eV/Å, the adsorption energy is -0.6185 eV, and when the energy convergence criterion is decreased to 0.02 eV/Å, the DFT calculation results show that the adsorption energy has only a small change (0.0012 eV). Therefore, in order to save computing resources, the energy convergence criterion of 0.05 eV/Å is used to complete all calculations.

Table S2. Adsorption energy of methanol molecules on $RuP_2(110)$ surface when

EDIFFG	$E_{\rm surface}$	$E_{\rm adsorbate}$	$E_{ m adsorbate/surface}$	$E_{\rm ads}$
0.02 eV/Å	-492.3153	-30.2068	-523.1406	-0.6185
0.05 eV/Å	-492.3167	-30.2073	-523.1413	-0.6173

energy convergence criterion are 0.02 and 0.05 (in eV/ Å).

4.Adsorption information for MD reaction intermediates on Ru(0001), Ru₂P(210), RuP(112), and RuP₂(110).

Species	Sites	Configuration	E_{ads}/eV	<i>d</i> _{C-0} /Å	d_ _{C−H} /Å	<i>d</i> _{О-Н} /Å	d _{C-Ru} /Å	d _{O−Ru} /Å
CH ₃ OH*	Ru-top	$\eta^1(O)$	-0.482	1.450	1.100	0.980		2.306
CH ₂ OH*	Ru ₂ -bridge	$\eta^{1}(C) - \eta^{1}(O)$	-1.857	1.476	1.100	0.981	2.145	2.271
CH ₃ O*	Ru ₃ -fcc	$\eta^{3}(O)$	-2.666	1.437	1.100			2.166, 2.202, 2.254
CH ₂ O*	Ru ₃ -hcp	$\eta^{1}(C)-\eta^{2}(O)$	-1.020	1.414	1.104		2.146	2.167, 2.192
СНОН*	Ru ₃ -hcp	$\eta^{2}(C) - \eta^{1}(O)$	-3.054	1.469	1.102	0.983	2.104, 2.085	2.273
CHO*	Ru ₂ -bridge	$\eta^2(O)$	-2.420	1.269	1.113		2.010	2.196
СОН*	Ru ₃ -fcc	$\eta^{3}(O)$	-4.299	1.349		0.981	2.094, 2.045, 2.030	
CO *	Ru-top	$\eta^1(C)$	-1.771	1.167			1.902	

Table S3. Adsorption sites, adsorption energies (in eV), and structural parameters (inangstroms) for intermediates involved in MD on Ru(0001).

Table S4. Adsorption sites, adsorption energies (in eV), and structural parameters (inangstroms) for intermediates involved in MD on Ru2P(210).

Species	Sites	Configuration	$E_{\rm ads}/{\rm eV}$	$d_{\text{C-O}}/\text{\AA}$	$d_{\mathrm{C-H}}/\mathrm{\AA}$	<i>d</i> _{О-Н} /Å	d _{C-Ru} /Å	d _{O-Ru} /Å
CH ₃ OH*	Ru-top	$\eta^{1}(O)$	-0.634	1.445	1.100	0.978		2.309
CH ₂ OH*	Ru ₂ -bridge	$\eta^{1}(C)-\eta^{1}(O)$	-1.884	1.466	1.101, 1.099	0.981	2.135	2.242
CH ₃ O*	Ru-top	$\eta^{1}(O)$	-2.403	1.407	1.109, 1.107, 1.104			1.954
CH ₂ O*	Ru ₂ -bridge	$\eta^1(C) – \eta^1(O)$	-0.793	1.368	1.102		2.254	1.967
СНОН*	Ru-top	$\eta^{1}(C)$	-2.376	1.335	1.106	0.994	1.932	

CHO*	Ru ₂ -bridge	$\eta^1(C)\!\!-\!\!\eta^1(O)$	-2.386	1.283	1.110		2.062	2.098
СОН*	Ru-top	$\eta^{1}(O)$	-3.986	1.294		0.985	1.762	
CO*	Ru-top	$\eta^{1}(O)$	-1.784	1.171			1.868	

Table S5. Adsorption sites, adsorption energies (in eV), and structural parameters (inangstroms) for intermediates involved in MD on RuP(112).

Species	Sites	Configuration	E _{ads} /eV	<i>d</i> _{C-0} /Å	$d_{\rm C-H}/{ m \AA}$	d _{O-H} /Å	d _{C-Ru} /Å	d _{O-Ru} /Å
CH ₃ OH*	Ru-top	$\eta^1(O)$	-0.673	1.445	1.100	0.980		2.225
CH ₂ OH*	Ru-top	$\eta^1(C)$	-2.352	1.423	1.095, 1.093	0.988	2.084	
CH ₃ O*	Ru-top	$\eta^{1}(O)$	-2.533	1.407	1.106, 1.105, 1.104			1.928
CH ₂ O*	Ru-bridge	$\eta^{1}(C) - \eta^{1}(O)$	-0.990	1.331	1.108, 1.102		2.124	2.040
СНОН*	Ru ₂ -bridge	$\eta^2(C)$	-2.848	1.361	1.112	0.994	2.086, 2.054	
CHO*	Ru ₂ -bridge	$\eta^{1}(C) - \eta^{1}(O)$	-2.913	1.287	1.110		2.107, 2.050	
COH*	Ru ₂ -bridge	$\eta^2(C)$	-3.878	1.322		0.982	1.967, 1.917	
C O *	Ru ₂ -bridge	$\eta^2(O)$	-1.282	1.193			2.078, 1.992	

Table S6. Adsorption sites, adsorption energies (in eV), and structural parameters (in

angstroms) for intermediates involved in MD on $RuP_2(110)$.

Species	Sites	Configuration	E _{ads} /eV	<i>d</i> _{C-0} /Å	d _{C-H} /Å	d _{o-H} /Å	d _{C-Ru} /Å	d _{O-Ru} /Å
CH ₃ OH*	Ru-top	$\eta^1(O)$	-0.617	1.451	1.100	0.992		2.290
CH ₃ O*	Ru ₂ -bridge	$\eta^2(O)$	-2.814	1.427	1.104, 1.103, 1.102			2.168, 2.180

CH ₂ OH*	Ru-top	$\eta^1(O)$	-0.479	1.372	1.085, 1.084	0.997		2.354
CH ₂ O*	Ru ₂ -bridge	η ² (O)	-1.027	1.247	1.103, 1.102			2.284, 2.340
CHO*	Ru ₂ -bridge	$\eta^1(C)\!\!-\!\!\eta^1(O)$	-2.100	1.265	1.116		2.046	2.228
CO *	Ru-top	$\eta^{1}(C)$	-1.248	1.162			1.925	

Figure S3. Top view of all the initial states (IS), the corresponding transition states (TS) and final states (FS) of on the Ru(0001) surfaces, along with the adsorption energies (E_{ads}). H: white; C: grey; O: red; Ru: cyan.

Figure S4. Top view of all the initial states (IS), the corresponding transition states (TS) and final states (FS) on the Ru₂P(210) surfaces, along with the adsorption energies (E_{ads}).H: white; C: grey; O : red; P: purple; Ru: cyan.

Figure S5. Top view of all the initial states (IS), the corresponding transition states (TS) and final states (FS) on the RuP(112) surfaces, along with the adsorption energies (E_{ads}).H: white; C: grey; O : red; P: purple; Ru: cyan.

Figure S6. Top view of all the initial states (IS), the corresponding transition states (TS) and final states (FS) on the RuP₂(110) surfaces, along with the adsorption energies (E_{ads}).H: white; C: grey; O : red; P: purple; Ru: cyan.

Figure S7. Screening of methanol adsorption sites on Ru(0001), Ru₂P(210), RuP(112), and RuP₂(110) surfaces (To save computing resources, the K-point of 1×1×1 is used for adsorption site screening). H: white; C: grey; O: red; P: purple; Ru: S10

cyan.

Reaction coordinate(pathway1)

Figure S8. Reaction energy barriers for pathway 1 on the Ru_xP_y surfaces.

Figure S9. Reaction energy barriers for pathway 2 on the Ru_xP_y surfaces.

Reaction coordinate(pathway3)

Figure S11. Reaction energy barriers for pathway 4 on the Ru_xP_y surfaces.

Reaction Coordinate

Figure S12. Optimal pathways for methanol dehydrogenation on Ru(0001) (pathway1), Ru₂P(210) (pathway3), RuP(112) (pathway1), and RuP₂(110) (pathway1)

Figure S13. Reaction free energy barriers for pathway 1 on the Ru_xP_y surfaces.

Figure S14. Reaction free energy barriers for pathway 2 on the Ru_xP_y surfaces.

Figure S15. Reaction free energy barriers for pathway 3 on the Ru_xP_y surfaces.

Figure S16. Reaction free energy barriers for pathway 4 on the Ru_xP_y surfaces.

Table S7. The states of TDTS and TDI, the energies of TDTS and TDI, and the calculated E_a^{eff} of MD over the surfaces of Ru(0001), Ru₂P(210), RuP(112), and RuP₂(110).

	Ru(0001)	Ru ₂ P (210)	RuP(112)	RuP ₂ (110)
TDTS	TS4	TS3	TS2	TS4
$E_{\rm TDTS}({\rm eV})$	0.76	1.19	0.08	2.68
TDI	CH ₃ OH*	CH ₃ OH*	CHO*+3H*	CH ₃ OH*
$E_{\rm TDI}({\rm eV})$	-0.48	-0.63	-0.70	-0.62
ΔE	0	0	0	0
$E_{\rm a}^{\rm eff}({\rm eV})$	1.24	1.82	0.78	3.30

Table S8. Comparison of previous DFT calculations works on the mechanism of MD

Catalyst	Calculation software	Advantage Path	RDS energy barrier (electronic energies)	Reference
RuP(112) Ru(0001)	VASP	$CH_3OH \rightarrow CH_3O \rightarrow CH_2O$ $\rightarrow CHO \rightarrow CO$	0.78 eV, 0.83 eV	In this work

reaction over metal-based catalysts (without support).

		$CH_3OH \rightarrow CH_3O \rightarrow CH_2O$		
		→СНО→СО		
Ru(0001)	DMol ³	$CH_{3}OH \rightarrow CH_{3}O \rightarrow CH_{2}O$ → $CHO \rightarrow CO$	1.01 eV	29
Pd(100)	CASTEP	$CH_{3}OH \rightarrow CH_{2}OH \rightarrow$ CHOH→CHO→CO	1.79 eV	11
Rh(111)	DMol ³	$CH_{3}OH \rightarrow CH_{3}O \rightarrow CH_{2}O$ $\rightarrow CHO \rightarrow CO \text{ and}$ $CH_{3}OH \rightarrow CH_{2}OH \rightarrow$ $CHOH \rightarrow CHO \rightarrow CO$	0.72 eV	14
Pd(111), Pt(111), Ni(111)	VASP	$CH_{3}OH \rightarrow CH_{2}OH \rightarrow$ $CHOH \rightarrow CHO \rightarrow CO,$ $CH_{3}OH \rightarrow CH_{2}OH \rightarrow$ $CHOH \rightarrow CHO \rightarrow CO,$ $CH_{3}OH \rightarrow CH_{2}OH \rightarrow$ $CHOH \rightarrow CHO \rightarrow CO$	0.66 eV, 0.62 eV, 0.74 eV	15
PdAu(100)	DMol ³	$CH_{3}OH \rightarrow CH_{3}O \rightarrow CH_{2}O$ $\rightarrow CHO \rightarrow CO$	1.41 eV	26
PtRu/Pt(111)	DMol ³	$CH_{3}OH \rightarrow CH_{3}O \rightarrow CH_{2}O$ $\rightarrow CHO \rightarrow CO$	1.10 eV	27