Supplementary information:

Probing the structure and dynamics of the heterocyclic PAH xanthene and its water complexes with infrared and microwave spectroscopy

Donatella Loru,^{*,†} Wenhao Sun,[†] Hugo Nootebos,[‡] Amanda Steber,[¶] Piero Ferrari,[‡] and Melanie Schnell^{*,†,§}

†Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
 ‡Radboud University, Institute of Molecules and Materials, FELIX Laboratory,
 Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

¶Department of Physical and Inorganic Chemistry, Faculty of Science, University of Valladolid, 47011 Valladolid, Spain

§Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany

E-mail: donatella.loru@desy.de; melanie.schnell@desy.de

Contents

1	Sup	plementary theoretical and experimental results	3
	1.1	Monomer	3
	1.2	Xanthene- H_2O	7
	1.3	Xanthene- $(H_2O)_2$	12
	1.4	Xanthene- $(H_2O)_3$	14
	1.5	Xanthene- $(H_2O)_4$	17
	1.6	Non-Covalent interactions analysis	19
2	Car	tesian coordinates of molecular geometries	20
	2.1	Cartesian coordinates of the xanthene monomer	20
	2.2	Cartesian coordinates of the xanthene-H ₂ O complexes	21
	2.3	Cartesian coordinates of the xanthene- $(H_2O)_2$ complexes $\ldots \ldots \ldots \ldots$	26
	2.4	Cartesian coordinates of the xanthene- $(H_2O)_3$ complexes $\ldots \ldots \ldots \ldots$	31
	2.5	Cartesian coordinates of the xanthene- $(H_2O)_4$ complexes $\ldots \ldots \ldots \ldots$	37
3	Me	asured rotational transitions	43
	3.1	Frequency lists of the xanthene monomer	43
	3.2	Frequency lists of the xanthene- H_2O complexes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	56
	3.3	Frequency list of the xanthene- $(H_2O)_2$ complex	84
	3.4	Frequency list of the xanthene- $(H_2O)_3$ complex	89
	3.5	Frequency list of the xanthene- $(H_2O)_4$ complex	91

1 Supplementary theoretical and experimental results

1.1 Monomer

Table S1: Experimental spectroscopic parameters for the parent species and seven ¹³C singlysubstituted isotopologues of xanthene, including rotational constants (A, B, and C), centrifugal distortion constants (D_J , D_{JK} , and D_K), number of lines in total (N), and rootmean-square (RMS) deviation. 0⁺ and 0⁻ denote the two tunneling states. The fittings were performed with Watson's S-reduced Hamiltonian in its I^r representation using Pickett's SP-FIT program. Note that limited by number of observed transitions, the 0⁺ state of ¹³C₁ and ¹³C₇ were excluded from the fit.

		pa	rent	13	C_1	
Parameters	Units	0+	0-	0^{+}	0-	
A	MHz	2031.0404(12)	2032.1108(11)		2017.0066(10)	
В	MHz	466.05932(60)	465.95043(44)		463.30596(36)	
C	MHz	385.25282(60)	385.12537(40)		382.78050(24)	
D_J	kHz	0.1180(49)	0.0192(29)		[0.0192]	
D_{JK}	kHz	-0.258(23)	-0.298(18)		[-0.298]	
D_K	kHz	1.17(15) $1.38(14)$			[1.38]	
Ν		(68		18	
RMS	kHz	7	7.3		9.4	
		13	$^{3}\mathrm{C}_{2}$	$^{13}C_{3}$		
Parameters	Units	0+	0-	0^{+}	0-	
A	MHz	2026.0773(10)	2027.13468(83)	2027.7780(17)	2028.8402(11)	
В	MHz	465.40538(60)	465.29873(36)	465.46580(90)	465.35884(45)	
C	MHz	384.64404(62)	384.51648(24)	384.74787(70)	384.61783(29)	
D_J	kHz	[0.1180]	[0.0192]	[0.1180]	[0.0192]	
D_{JK}	kHz	[-0.258]	[-0.298]	[-0.258]	[-0.298]	
D_K	kHz	[1.17]	[1.38]	[1.17]	[1.38]	

N		Ş	36	31		
RMS	kHz	8	.5	Q).6	
		13	C_4	13	$^{3}\mathrm{C}_{5}$	
Parameters	Units	0+	0-	0+	0-	
A	MHz	2015.2048(36)	2016.2135(11)	2025.6235(11)	2026.68632(88)	
В	MHz	463.7431(11)	463.65542(58)	460.69034(39)	460.58401(38)	
C	MHz	383.06776(92)	382.98255(42)	381.41548(44)	381.28854(25)	
D_J	kHz	[0.1180]	[0.0192]	[0.1180]	[0.0192]	
D_{JK}	kHz	[-0.258]	[-0.298]	[-0.258]	[-0.298]	
D_K	kHz	[1.17]	[1.38]	[1.17]	[1.38]	
Ν		2	23	42		
RMS	kHz	9	.1	8	3.3	
		13	C_6	$^{13}C_{7}$		
Parameters	Units	0+	0-	0+	0-	
A	MHz	2027.5799(13)	2028.6343(10)		2010.5640(15)	
В	MHz	460.41980(49)	460.31357(33)		465.92388(45)	
C	MHz	381.31012(55)	381.18595(22)		384.42183(29)	
D_J	kHz	[0.1180]	[0.0192]		[0.0192(34)]	
D_{JK}	kHz	[-0.258]	[-0.298]		[-0.298(21)]	
D_K	kHz	[1.17]	[1.38]		[1.38(16)]	
Ν		ŝ	31		19	
RMS	kHz	7	7.6		9.8	

Figure S1: Theoretical structure of the xanthene monomer calculated at the B3LYP-D3BJ/def2-TZVP level of theory. The numbering of the carbon atoms, which was used for the identification of the 13 C isotopologues, is provided.

Table S2: Kraitchman coordinates (in Å) and the estimated uncertainties for the substituted structure (r_s) of the xanthene monomer, obtained with rotational constants of the parent species and seven ¹³C isotopologues in the 0⁻ state.

Atoms	$a(\Delta a)$	$b(\Delta b)$	$c(\Delta c)$
$\mathrm{C}_{1}/\mathrm{C}_{10}$	2.48657(65)	1.3685(12)	0.086(19)
$\mathrm{C}_2/\mathrm{C}_9$	1.2231(13)	0.7657(21)	0.1638(99)
$\mathrm{C}_3/\mathrm{C}_8$	1.1640(14)	0.6158(26)	0.150(10)
$\mathrm{C}_4/\mathrm{C}_{13}$	2.31810(69)	1.4082(11)	0.0
$\mathrm{C}_{5}/\mathrm{C}_{12}$	3.55040(45)	0.7916(20)	0.2248(72)
$\mathrm{C}_{6}/\mathrm{C}_{11}$	3.63745(44)	0.5982(27)	0.2756(59)
C_7	0.0	1.5830(10)	0.4060(40)

Figure S2: Mass spectra of xanthene (m/z = 182) recorded with (red trace) and without (black trace) FELIX. The comparison between the two mass spectra shows the depletion in the signal of xanthene and signal in-growth in its dissociation channel induced by FELIX.

1.2 Xanthene- H_2O

Figure S3: Molecular geometries of the energetically low-lying isomers of the xanthene-H₂O complexes within an energy window of 5.0 kJ/mol, calculated at the B3LYP-D4/def2-QZVP level of theory. Each isomer is shown from three different perspectives: top view, side view, and tilted view. The relative energies (in kJ/mol), corrected with zero-point energies (ZPE), are provided, with the energy of 1w-I set to 0 kJ/mol. The molecular geometry of the experimentally observed isomer is highlighted by a blue box. The corresponding Cartesian coordinates are available in Tables S14–S17 in Section 2.2. Rendered using UCSF ChimeraX software.¹

Table S3: Theoretical spectroscopic constants for the xanthene-H₂O complexes, calculated at the B3LYP-D4/def2-QZVP level of theory. The relative energies (ΔE_0 in kJ mol⁻¹) with vibrational zero-point energy corrections.

Isomers	ΔE_0	A/MHz	B/MHz	$\mathrm{C/MHz}$	$\mu_a/{ m D}$	$\mu_b/{ m D}$	$\mu_c/{ m D}$
1w-I	0.0	934.3	465.8	318.4	0.0	2.6	-1.3
1w-II	1.7	1227.8	425.3	377.2	0.0	-0.8	1.7
1w-III	2.1	1239.7	379.7	351.4	0.3	0.9	1.2
1w-IV	2.3	1148.6	408.0	386.2	-1.1	0.9	0.9

Parameters	Units	Calc.	Expt. (average)
A	MHz	934.3	913.47858(16)
В	MHz	465.8	464.72514(10)
C	MHz	318.4	317.02967(11)
Δ_J	kHz		0.01419(62)
Δ_{JK}	kHz		0.5924(12)
Δ_K	kHz		-0.3894(23)
δ_K	kHz		0.3378(15)
N $(a b c)$			226~(0 193 33)
RMS	kHz		7.0

Table S4: Experimental spectroscopic constants for the xanthene- H_2O , 1w-I, fitted with Watson's A-reduced Hamiltonian in its I^r representation using Pickett's SPFIT program.

Figure S4: Portion of the microwave spectrum highlighting the transitions arising from the 1w-I complex.

Table S5: Experimental spectroscopic constants for ¹³C singly substituted isotopologues of 1w-I, including rotational constants (A, B, and C), number of lines in total (N), and rootmean-square (RMS) deviation. The centrifugal distortion constants were fixed to those for the parent species (see Table S4). The fittings were performed with Watson's A-reduction Hamiltonian in its I^r representation using Pickett's SPFIT program.

Parameters	Units	$^{13}\mathrm{C}_{1}/^{13}\mathrm{C}_{13}$	$^{13}\mathrm{C}_2/^{13}\mathrm{C}_{12}$	$^{13}C_3/^{13}C_{11}$	$^{13}C_4/^{13}C_{10}$
A	MHz	913.37507(26)	911.69772(38)	912.96821(39)	911.66649(48)
В	MHz	464.13978(15)	462.42283(41)	459.38403(30)	459.16642(36)
C	MHz	316.748151(89)	315.77515(11)	314.54398(12)	314.24891(17)
Ν		47	43	36	36
RMS	kHz	6.1	8.1	7.8	9.5
Parameters	T T : 4	130 /130	130 /130	130	
1 arameters	Unit	$10C_{5}/10C_{9}$	$10C_{6}/10C_{8}$	$^{\circ}\mathrm{C}_{7}$	
A	MHz	908.48592(39)	911.32408(29)	907.04529(45)	
A B	MHz MHz	908.48592(39) $462.11299(45)$	911.32408(29) $464.06271(22)$	$ \begin{array}{c} $	
A B C	MHz MHz MHz	908.48592(39) $462.11299(45)$ $315.21282(13)$	911.32408(29) $464.06271(22)$ $316.48392(10)$	907.04529(45) $464.58472(71)$ $316.34505(16)$	
A B C N	MHz MHz MHz	$ \begin{array}{c} 8005/3009 \\ 908.48592(39) \\ 462.11299(45) \\ 315.21282(13) \\ 32 \end{array} $	$ \begin{array}{r} 10C_6/3C_8 \\ 911.32408(29) \\ 464.06271(22) \\ 316.48392(10) \\ 42 \\ \end{array} $	$ \begin{array}{r} 907.04529(45) \\ 464.58472(71) \\ 316.34505(16) \\ 19 \\ 19 $ 19	

Since no *c*-type transitions were observed for any of the singly-substituted 13 C isotopologues, to determine the substitution structure of xanthene in the 1w-I complex, we considered the rotational constants of the monomer obtained from an average fit that did not account for the tunneling splitting of the *c*-type transitions; instead, only the center frequencies were considered.

Table S6: Kraitchman coordinates (in Å) and the estimated uncertainties for the substituted structure (r_s) of xanthene in the 1w-I complex, obtained with rotational constants of the parent species and seven ¹³C isotopologues.

Atoms	$a(\Delta a)$	$\mathbf{b}(\Delta b)$	$c(\Delta c)$
$\mathrm{C}_{1}/\mathrm{C}_{13}$	-3.61682(43)	-1.0232(15)	-0.2840(54)
$\mathrm{C}_2/\mathrm{C}_{12}$	-2.47438(62)	-1.75523(88)	0.0
$\mathrm{C}_3/\mathrm{C}_{11}$	-1.2229(12)	-1.1215(14)	0.2367(64)
$\mathrm{C}_4/\mathrm{C}_{10}$	-1.1704(13)	0.2432(63)	0.062(25)
$\mathrm{C}_{5}/\mathrm{C}_{9}$	-2.30906(66)	1.0056(15)	-0.2858(54)
$\mathrm{C}_6/\mathrm{C}_8$	-3.53289(43)	0.3671(42)	-0.4246(36)
C_7	0.0	-1.87753(84)	-0.6362(25)

Figure S5: Comparison of the Kraitchman substitution coordinates (r_s , orange solid spheres) of 1w-I with the equilibrium structure (r_e , ball and stick model) calculated at the B3LYP-D4/def2-QZVP level of theory. Rendered using UCSF ChimeraX software.¹

Figure S6: Tunneling pathways for the 1w-I complex. (a) The pathway involves a swinging motion of the water molecule, causing a switch of the water's hydrogen atom involved in the O-H···O interaction, while xanthene undergoes a butterfly-like motion to tunnel between its two equivalent geometries. (b) The pathway involves a simple flip of the water's dangling hydrogen atom above and below xanthene's plane, alongside the butterfly-like motion of xanthene. The reported energy barriers are single-point energies calculated at the DLPNO-CCSD(T)/cc-pVTZ//B3LYP-D3(BJ)/def2-TZVP level of theory.

1.3 Xanthene- $(H_2O)_2$

Figure S7: Molecular geometries of the energetically low-lying isomers of the xanthene- $(H_2O)_2$ complexes within an energy window of 5.0 kJ/mol, calculated at the B3LYP-D4/def2-QZVP level of theory. Each isomer is shown from three different perspectives: top view, side view, and tilted view. The relative energies (in kJ/mol), corrected with zero-point energies (ZPE), are provided, with the energy of 2w-I set to 0 kJ/mol. The molecular geometry of the experimentally observed isomer is highlighted by a blue box. The corresponding Cartesian coordinates are available in Tables S18–S21 in Section 2.3. Rendered using UCSF ChimeraX software.¹

Table S7: Theoretical spectroscopic constants for the xanthene- $(H_2O)_2$ complexes, calculated at the B3LYP-D4/def2-QZVP level of theory. The relative energies (ΔE_0 in kJ mol⁻¹) with vibrational zero-point energy corrections.

Isomers	ΔE_0	A/MHz	B/MHz	$\mathrm{C/MHz}$	$\mu_a/{ m D}$	$\mu_b/{ m D}$	$\mu_c/{ m D}$
2w-I	0.0	770.6	425.9	325.6	0.0	0.3	0.3
2w-II	1.4	738.0	371.2	346.9	-0.4	0.7	-0.5
2w-III	2.4	625.7	406.1	255.6	-2.3	1.2	0.7
2w-IV	4.4	632.3	400.5	260.9	-2.4	1.3	1.4

Figure S8: Portion of the microwave spectrum highlighting the transitions arising from the 2w-III complex.

Table S8: Experimental spectroscopic constants for the xanthene- $(H_2O)_2$ complex, 2w-III, fitted with Watson's A-reduced Hamiltonian in its I^r representation using Pickett's SPFIT program. The spectrum is assigned to 2w-III due to its lower energy compared to 2w-IV, and its smaller dipole-moment component along the principal c-axis, which is in consistency with the observed line intensities.

Parameters	Units	Calc.		Expt.	
		2w-III	2w-IV		
A	MHz	625.7	632.3	610.66041(75)	
В	MHz	406.1	400.5	404.52319(18)	
C	MHz	255.6	260.9	255.01107(21)	
Δ_J	kHz			0.0150(10)	
Δ_{JK}	kHz			0.0832(76)	
Δ_K	kHz			0.126(27)	
N(a b c)				107 (72 23 12)	

RMS	kHz	9.0
-----	-----	-----

1.4 Xanthene- $(H_2O)_3$

Figure S9: Molecular geometries of the energetically low-lying isomers of the xanthene- $(H_2O)_3$ complexes within an energy window of 5.0 kJ/mol, calculated at the B3LYP-D4/def2-QZVP level of theory. Each isomer is shown from three different perspectives: top view, side view, and tilted view. The relative energies (in kJ/mol), corrected with zero-point energies (ZPE), are provided, with the energy of 3w-I set to 0 kJ/mol. The molecular geometry of the experimentally observed isomer is highlighted by a blue box. The corresponding Cartesian coordinates are available in Tables S22–S25 in Section 2.4. Rendered using UCSF ChimeraX software.¹

Table S9: Theoretical spectroscopic constants for the xanthene- $(H_2O)_3$ complexes, calculated at the B3LYP-D4/def2-QZVP level of theory. The relative energies (ΔE_0 in kJ mol⁻¹) with vibrational zero-point energy corrections.

Isomers	ΔE_0	A/MHz	B/MHz	$\mathrm{C/MHz}$	$\mu_a/{ m D}$	$\mu_b/{ m D}$	$\mu_c/{ m D}$
3w-I	0.0	690.8	356.4	319.4	0.3	-0.8	-1.7
3w-II	2.0	674.9	320.0	295.6	0.9	1.9	1.7
3w-III	2.0	674.3	322.8	295.8	1.0	-1.7	-1.7
3w-IV	4.5	685.4	357.1	319.5	0.2	-1.9	0.4

Figure S10: Portion of the microwave spectrum highlighting the transitions arising from the 3w-I complex.

Table S10: Experimental spectroscopic constants for the xanthene- $(H_2O)_3$ complex, 3w-I, fitted with Watson's A-reduced Hamiltonian in its I^r representation using Pickett's SPFIT program.

Parameters	Units	Calc.	Expt.
A	MHz	690.8	668.50669(85)

В	MHz	356.4	359.35148(40)
C	MHz	319.4	313.21931(45)
Δ_J	kHz		0.0530(25)
Δ_{JK}	kHz		0.176(13)
N $(a b c)$			$52 \ (0 0 49)$
RMS	kHz		10.6

1.5 Xanthene- $(H_2O)_4$

Figure S11: Molecular geometries of the energetically low-lying isomers of the xanthene- $(H_2O)_4$ complexes within an energy window of 5.0 kJ/mol, calculated at the B3LYP-D4/def2-QZVP level of theory. Each isomer is shown from three different perspectives: top view, side view, and tilted view. The relative energies (in kJ/mol), corrected with zero-point energies (ZPE), are provided, with the energy of 4w-I set to 0 kJ/mol. The molecular geometry of the experimentally observed isomer is highlighted by a blue box. The corresponding Cartesian coordinates are available in Tables S26–S29 in Section 2.5. Rendered using UCSF ChimeraX software.¹

Table S11: Theoretical spectroscopic constants for the xanthene- $(H_2O)_4$ complexes, calculated at the B3LYP-D4/def2-QZVP level of theory. The relative energies (ΔE_0 in kJ mol⁻¹) with vibrational zero-point energy corrections.

Isomers	ΔE_0	A/MHz	B/MHz	$\mathrm{C/MHz}$	$\mu_a/{ m D}$	$\mu_b/{ m D}$	$\mu_c/{ m D}$
4w-I	0.0	559.8	320.4	290.7	-0.1	-0.4	-0.9
4w-II	0.3	569.3	317.3	289.7	-0.1	-2.7	-2.4
4w-III	2.6	582.7	279.5	247.7	-0.6	1.2	0.7
4w-IV	2.6	582.0	277.0	246.0	-0.6	1.2	-0.6

Figure S12: Portion of the microwave spectrum highlighting the transitions arising from the 4w-II complex.

Table S12: Experimental spectroscopic constants for the xanthene- $(H_2O)_4$ complex, 4w-II, fitted with Watson's A-reduced Hamiltonian in its I^r representation using Pickett's SPFIT program. The spectrum is assigned to 4w-II due to its larger dipole-moment components compared to 4w-I.

Parameters	Units	Calc.		Expt.
		4w-I	4w-II	
Α	MHz	559.8	569.3	558.1509(10)
В	MHz	320.4	317.3	314.64302(37)
C	MHz	290.7	289.7	286.93462(51)
Δ_K	kHz			0.136(24)
δ_K	kHz			1.682(98)
N $(a b c)$				44~(0 24 20)
RMS	kHz			10.6

1.6 Non-Covalent interactions analysis

To visualize the non-covalent interactions at play in the observed xanthene- $(H_2O)_{n=1-4}$ complexes, we applied the non-covalent interaction method (NCI) using the Multiwfn program.^{2,3} This method is based on the analysis of the electron density and its derivatives to reveal the non-covalent interactions within a molecular system.

Figure S13: NCI plots of the observed xanthene- $(H_2O)_{n=1-4}$ complexes. The presented structures were optimized at the B3LYP-D4/def2-QZVP level of theory. The isourfaces are displayed with a cut-off of 0.5. Attractive and repulsive interactions are defined by the sign of sign $(\lambda_2)\rho$, where λ_2 is the second eigenvalue of the electron density Hessian and ρ is the electron density.

2 Cartesian coordinates of molecular geometries

2.1 Cartesian coordinates of the xanthene monomer

Atoms	Х	Υ	Ζ
С	-3.638007	-0.599538	0.245328
С	-2.489632	-1.361750	0.091187
С	-1.245418	-0.768434	-0.106602
С	-1.181905	0.621213	-0.125197
С	-2.321923	1.401731	0.026865
С	-3.550899	0.788714	0.206818
С	1.181900	0.621222	-0.125175
С	1.245422	-0.768429	-0.106600
С	2.489636	-1.361749	0.091166
Н	2.552983	-2.442310	0.116487
С	3.638011	-0.599539	0.245312
С	3.550895	0.788713	0.206825
С	2.321919	1.401735	0.026892
Н	-4.593187	-1.082509	0.393899
Н	-2.552973	-2.442313	0.116528
Н	-2.223805	2.477481	0.005670
Н	-4.438573	1.394091	0.325077
Н	4.593196	-1.082505	0.393872
Н	4.438567	1.394095	0.325088
Н	2.223810	2.477486	0.005706

Table S13: Cartesian coordinates for the equilibrium structure of the xanthene monomer.

Atoms	Х	Y	Ζ
Ο	-0.000001	1.299124	-0.297253
\mathbf{C}	0.000002	-1.581950	-0.334063
Н	-0.000011	-1.967113	-1.360474
Н	-0.000005	-2.459814	0.314618

2.2 Cartesian coordinates of the xanthene- H_2O complexes

Table S14: Cartesian coordinates for the equilibrium structure of the xanthene-H₂O complex, 1w-I.

Atoms	Х	Y	Ζ
\mathbf{C}	-3.618844	1.010983	-0.266521
С	-2.477462	1.744610	0.022110
С	-1.243612	1.123096	0.194594
\mathbf{C}	-1.186722	-0.257593	0.046148
\mathbf{C}	-2.315356	-1.012091	-0.244926
С	-3.535451	-0.371830	-0.394231
С	1.186722	-0.257594	0.046148
С	1.243613	1.123096	0.194594
С	2.477462	1.744610	0.022110
Н	2.538816	2.820509	0.124186
С	3.618844	1.010983	-0.266521
С	3.535451	-0.371830	-0.394231
С	2.315356	-1.012091	-0.244926
Н	-4.567330	1.513010	-0.392468

Atoms	Х	Y	Ζ
Н	-2.538816	2.820509	0.124186
Η	-2.221737	-2.082891	-0.356775
Η	-4.418376	-0.952301	-0.621008
Η	4.567330	1.513010	-0.392468
Η	4.418376	-0.952301	-0.621008
Η	2.221737	-2.082892	-0.356774
Ο	0.000000	-0.948734	0.188481
\mathbf{C}	0.000000	1.885260	0.564999
Н	0.000000	2.865014	0.085497
Η	0.000000	2.077150	1.644497
Ο	0.000000	-3.853581	0.301716
Η	0.000000	-4.156519	1.212207
Η	0.000000	-2.888845	0.350855

Table S15: Cartesian coordinates for the equilibrium structure of the xanthene-H₂O complex, 1w-II.

Atoms	Х	Y	Ζ
\mathbf{C}	-3.605560	-0.487620	0.126265
\mathbf{C}	-2.467512	-1.101458	0.629701
С	-1.239515	-0.444437	0.645008
\mathbf{C}	-1.178575	0.840653	0.112547
С	-2.307887	1.471493	-0.393668
С	-3.523561	0.806315	-0.378782
\mathbf{C}	1.178575	0.840652	0.112547
С	1.239515	-0.444437	0.645008
С	2.467512	-1.101458	0.629701

Atoms	Х	Y	Ζ
Н	2.526178	-2.106775	1.026032
\mathbf{C}	3.605561	-0.487620	0.126265
\mathbf{C}	3.523561	0.806315	-0.378782
\mathbf{C}	2.307887	1.471493	-0.393669
Н	-4.549244	-1.013642	0.126925
Н	-2.526178	-2.106775	1.026032
Н	-2.213274	2.469038	-0.797347
Н	-4.404108	1.293433	-0.772917
Н	4.549244	-1.013641	0.126926
Н	4.404108	1.293433	-0.772917
Н	2.213274	2.469038	-0.797348
Ο	0.000000	1.546792	0.058541
\mathbf{C}	0.000000	-1.057056	1.238670
Н	0.000000	-0.897252	2.323282
Н	0.000000	-2.136264	1.086289
Ο	0.000000	-2.072536	-2.044635
Н	-0.760838	-1.578498	-1.725214
Н	0.760838	-1.578498	-1.725214

Table S16: Cartesian coordinates for the equilibrium structure of the xanthene-H₂O complex, 1w-III.

Atoms	Х	Y	Z
С	-3.348589	-0.060961	-1.043776
\mathbf{C}	-2.250652	-0.910979	-1.053117
\mathbf{C}	-1.021648	-0.515560	-0.529590
С	-0.914850	0.775323	-0.019764

Atoms	Х	Y	Z
С	-2.003098	1.640761	-0.003838
С	-3.221852	1.218211	-0.509711
С	1.427660	0.593486	0.231737
С	1.442121	-0.710018	-0.252883
\mathbf{C}	2.678582	-1.292909	-0.516951
Н	2.706161	-2.304337	-0.901686
\mathbf{C}	3.863141	-0.608858	-0.286775
\mathbf{C}	3.822006	0.688604	0.213673
\mathbf{C}	2.602765	1.295126	0.468889
Н	-4.294094	-0.392843	-1.447556
Н	-2.346441	-1.910224	-1.458002
Н	-1.873872	2.633003	0.403665
Н	-4.069279	1.888701	-0.495052
Н	4.811493	-1.083060	-0.494741
Н	4.738489	1.231146	0.397630
Н	2.541226	2.305861	0.845443
Ο	0.254570	1.258461	0.507359
\mathbf{C}	0.148297	-1.455388	-0.437579
Н	0.198046	-2.087487	-1.325551
Н	-0.009165	-2.130792	0.410989
Ο	-2.507449	-1.514493	2.287928
Н	-2.332011	-0.734971	2.820245
Н	-2.701937	-1.172400	1.409166

Atoms	X	Y	Z
С	-3.564565	0.917559	0.323836
\mathbf{C}	-2.431494	1.472689	-0.255544
\mathbf{C}	-1.214729	0.798519	-0.248575
С	-1.161364	-0.439485	0.382539
С	-2.280678	-1.012855	0.967487
С	-3.488437	-0.331438	0.930427
С	1.200461	-0.461637	0.354235
С	1.261090	0.775506	-0.276438
С	2.488685	1.429106	-0.308720
Н	2.553366	2.397249	-0.788178
С	3.623211	0.853933	0.246895
С	3.538365	-0.394309	0.853977
С	2.320696	-1.055231	0.915530
Н	-4.501409	1.455609	0.302143
Н	-2.489479	2.441960	-0.733660
Н	-2.188722	-1.976313	1.447818
Н	-4.365064	-0.770945	1.384825
Н	4.568975	1.374888	0.205113
Н	4.417129	-0.850044	1.287649
Н	2.222966	-2.019170	1.393446
Ο	0.012437	-1.167894	0.431380
С	0.020605	1.326266	-0.924726
Н	0.030998	2.416263	-0.909545
Н	0.005913	1.021830	-1.976973

Table S17: Cartesian coordinates for the equilibrium structure of the xanthene-H₂O complex, 1w-IV.

Atoms	Х	Y	Ζ
Ο	-0.187604	-1.833961	-2.488696
Н	-0.093585	-1.947330	-1.536256
Н	-1.094147	-2.084476	-2.680485

2.3 Cartesian coordinates of the xanthene- $(H_2O)_2$ complexes

Table S18: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_2$ complex, 2w-I.

Atoms	Х	Y	Ζ
С	-3.571893	-0.231584	-0.111305
\mathbf{C}	-2.442898	-0.800362	-0.685566
\mathbf{C}	-1.234039	-0.110743	-0.725978
\mathbf{C}	-1.178143	1.151063	-0.138609
\mathbf{C}	-2.297193	1.735954	0.439150
\mathbf{C}	-3.498714	1.042935	0.442154
\mathbf{C}	1.173432	1.154252	-0.138589
С	1.232768	-0.107469	-0.725810
С	2.443426	-0.793896	-0.685188
Н	2.491601	-1.787158	-1.110376
С	3.570835	-0.221954	-0.110986
С	3.494251	1.052477	0.442234
С	2.290909	1.742312	0.439038
Н	-4.503328	-0.778908	-0.094378
Η	-2.488573	-1.793569	-1.111207

Atoms	Х	Y	Ζ
Н	-2.208113	2.717428	0.881682
Н	-4.373555	1.492766	0.889779
Н	4.503720	-0.766806	-0.093819
Н	4.367888	1.504719	0.889790
Н	2.199202	2.723647	0.881337
Ο	-0.003358	1.869595	-0.098456
С	0.000160	-0.658756	-1.388413
Н	-0.000090	-0.365660	-2.445174
Н	0.001567	-1.746429	-1.360617
Ο	0.015346	-3.584087	0.126511
Н	0.011303	-2.963516	0.875492
Н	0.028241	-4.460943	0.514312
Ο	-0.000628	-1.487643	2.042870
Н	0.759002	-0.967887	1.758746
Н	-0.765541	-0.976627	1.757108

Table S19: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_2$ complex, 2w-II.

Atoms	Х	Y	Ζ
С	-3.565360	1.157604	0.335640
\mathbf{C}	-2.412571	1.232097	1.105247
С	-1.197019	0.742010	0.637172
\mathbf{C}	-1.170846	0.195664	-0.640397
\mathbf{C}	-2.309342	0.113871	-1.429078
\mathbf{C}	-3.513474	0.591808	-0.933632
\mathbf{C}	1.199432	0.139796	-0.672814

Atoms	Х	Y	Z
С	1.283071	0.692702	0.599027
\mathbf{C}	2.529600	1.136959	1.029468
Н	2.614425	1.576887	2.014569
С	3.655932	1.010822	0.228250
С	3.545624	0.436487	-1.033513
\mathbf{C}	2.310289	0.004050	-1.491466
Н	-4.499236	1.538572	0.723289
Н	-2.452324	1.666861	2.095413
Н	-2.234600	-0.310079	-2.420465
Н	-4.404705	0.532864	-1.542022
Н	4.614968	1.357148	0.585954
Н	4.416854	0.333508	-1.664516
Н	2.192042	-0.431764	-2.473085
Ο	-0.005432	-0.319958	-1.180612
\mathbf{C}	0.056644	0.744865	1.467540
Н	0.054040	-0.136672	2.116459
Н	0.082799	1.623205	2.113263
О	-0.414861	-3.106602	-0.582973
Н	-0.215329	-2.238766	-0.964218
Н	-1.365220	-3.211131	-0.674269
Ο	0.138813	-2.496382	2.132747
Н	-0.010259	-2.809760	1.223909
Н	0.768444	-3.110458	2.515139

Table S20: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_2$ complex, 2w-III.

Atoms	Х	Y	Ζ
\mathbf{C}	-4.014902	-0.139219	-0.349148
\mathbf{C}	-3.234386	0.957698	-0.014026
\mathbf{C}	-1.861600	0.834909	0.181184
\mathbf{C}	-1.290611	-0.420071	0.005015
\mathbf{C}	-2.051895	-1.531288	-0.331529
\mathbf{C}	-3.420131	-1.387358	-0.501316
\mathbf{C}	0.913542	0.470917	0.045198
\mathbf{C}	0.442463	1.765605	0.226808
\mathbf{C}	1.347435	2.812735	0.077314
Η	0.996677	3.828832	0.204686
С	2.680895	2.571436	-0.219652
С	3.125409	1.263353	-0.380674
С	2.240762	0.202412	-0.257330
Η	-5.079589	-0.022461	-0.491658
Η	-3.693934	1.930059	0.108110
Η	-1.566051	-2.487866	-0.459211
Η	-4.018931	-2.248066	-0.763164
Η	3.368920	3.397931	-0.326249
Η	4.161464	1.062764	-0.613285
Н	2.574586	-0.816284	-0.400244
Ο	0.066443	-0.620957	0.167651
\mathbf{C}	-0.996685	1.990722	0.604202
Η	-1.072182	2.120757	1.690351
Н	-1.363078	2.918713	0.163638

Atoms	Х	Υ	Ζ
0	0.921016	-3.249149	0.836119
Н	0.640743	-2.332032	0.687676
Н	0.925193	-3.374177	1.787801
0	3.470372	-2.993753	-0.354229
Н	2.613797	-3.237665	0.036324
Н	3.629631	-3.633259	-1.051150

Table S21: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_2$ complex, 2w-IV.

Atoms	Х	Y	Ζ
С	-4.028370	-0.135324	-0.311432
С	-3.235768	0.928617	0.095236
\mathbf{C}	-1.856857	0.793559	0.228024
С	-1.292572	-0.438418	-0.082394
\mathbf{C}	-2.065969	-1.513571	-0.498226
\mathbf{C}	-3.439803	-1.360913	-0.604392
\mathbf{C}	0.909868	0.447413	-0.045360
\mathbf{C}	0.447958	1.721380	0.261308
\mathbf{C}	1.347384	2.778989	0.160511
Н	1.004208	3.780826	0.384557
\mathbf{C}	2.666979	2.564218	-0.209999
\mathbf{C}	3.103519	1.273937	-0.492156
\mathbf{C}	2.223534	0.204570	-0.418493
Н	-5.097529	-0.009376	-0.403298
Η	-3.690796	1.883932	0.322970
Н	-1.581606	-2.446477	-0.749225

Atoms	Х	Y	Ζ
Н	-4.047280	-2.193680	-0.929068
Н	3.351252	3.397840	-0.278446
Н	4.129607	1.096788	-0.781568
Н	2.545195	-0.803052	-0.644894
Ο	0.066444	-0.652495	0.016645
\mathbf{C}	-0.973888	1.908823	0.717882
Н	-1.002722	1.938944	1.813516
Н	-1.357522	2.871846	0.379047
Ο	3.313390	-3.077676	-0.504257
Н	4.133310	-3.250120	-0.037094
Н	2.611097	-3.180804	0.160010
Ο	1.132125	-2.977396	1.290809
Н	0.456218	-3.649979	1.396737
Н	0.689193	-2.207431	0.901584

2.4 Cartesian coordinates of the xanthene- $(H_2O)_3$ complexes

Table S22: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_3$ complex, 3w-I.

Atoms	Х	Y	Ζ
С	-3.541436	-0.268923	0.613034
\mathbf{C}	-2.406930	-0.034206	1.376361
\mathbf{C}	-1.157419	-0.499082	0.978192
\mathbf{C}	-1.072164	-1.192539	-0.224587

Atoms	X	Y	Ζ
С	-2.195660	-1.437176	-1.005297
\mathbf{C}	-3.433910	-0.977677	-0.580289
\mathbf{C}	1.281775	-1.085059	-0.242701
\mathbf{C}	1.320180	-0.380179	0.956026
\mathbf{C}	2.525774	0.206668	1.328965
Н	2.563866	0.776298	2.248062
\mathbf{C}	3.664585	0.078002	0.546647
\mathbf{C}	3.606059	-0.646661	-0.639822
\mathbf{C}	2.410950	-1.225811	-1.041061
Н	-4.501604	0.102048	0.940995
Н	-2.482869	0.527471	2.297732
Н	-2.080643	-1.977260	-1.933866
Н	-4.310430	-1.165780	-1.183976
Н	4.589716	0.542316	0.855969
Н	4.486056	-0.752733	-1.258162
Н	2.332689	-1.780342	-1.964996
Ο	0.125239	-1.661520	-0.709818
\mathbf{C}	0.081191	-0.279631	1.802007
Н	0.124402	-1.027751	2.602077
Н	0.036806	0.697183	2.281500
Ο	-1.706870	2.057926	-1.439337
Н	-0.818727	1.868875	-1.789752
Н	-2.154904	1.209002	-1.373074
Ο	-0.276382	2.838405	0.791911
Н	-0.309993	3.789329	0.916519
Н	-0.972580	2.632440	0.134038

Atoms	Х	Υ	Ζ
Ο	1.098140	2.007485	-1.580437
Н	0.957555	2.282843	-0.659609
Н	1.705353	1.262951	-1.539696

Table S23: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_3$ complex, 3w-II.

Atoms	Х	Y	Ζ
С	-4.098186	-0.137228	-0.586689
\mathbf{C}	-2.953003	-0.304123	-1.351882
\mathbf{C}	-1.688924	-0.322161	-0.768832
\mathbf{C}	-1.613098	-0.189162	0.612271
\mathbf{C}	-2.744722	-0.021342	1.397393
\mathbf{C}	-3.991284	0.010360	0.792198
\mathbf{C}	0.684594	-0.766055	0.639864
\mathbf{C}	0.723474	-0.918878	-0.741923
\mathbf{C}	1.870926	-1.473991	-1.300454
Н	1.918453	-1.600959	-2.374051
\mathbf{C}	2.951828	-1.846021	-0.512289
\mathbf{C}	2.889283	-1.675419	0.868236
\mathbf{C}	1.749567	-1.139341	1.448311
Н	-5.068399	-0.121237	-1.061980
Н	-3.032919	-0.413740	-2.425652
Н	-2.632620	0.076917	2.467443
Н	-4.876938	0.141610	1.397308
Η	3.834498	-2.270141	-0.968914
Н	3.722493	-1.965174	1.492374

Atoms	Х	Y	Ζ
Η	1.672093	-0.999681	2.516736
0	-0.400230	-0.203530	1.277392
\mathbf{C}	-0.427918	-0.437115	-1.580308
Н	-0.173107	0.544755	-1.991882
Н	-0.583074	-1.105346	-2.428544
Ο	3.186328	1.704427	-0.078357
Н	2.585352	1.894273	0.665580
Н	3.329397	0.753046	-0.056888
Ο	0.892484	2.496228	1.367223
Н	0.650472	2.748385	0.461847
Н	0.319050	1.751330	1.579580
Ο	1.010468	2.600938	-1.501059
Н	1.887990	2.262879	-1.226102
Н	1.178847	3.373660	-2.044113

Table S24: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_3$ complex, 3w-III.

Atoms	Х	Y	Ζ
С	-3.018170	-1.707799	-0.683355
\mathbf{C}	-1.932794	-1.265799	-1.428404
\mathbf{C}	-0.763782	-0.823078	-0.815837
\mathbf{C}	-0.708785	-0.856700	0.573466
\mathbf{C}	-1.778864	-1.302444	1.337691
\mathbf{C}	-2.938929	-1.723266	0.706701
\mathbf{C}	1.598173	-0.312733	0.596817
С	1.659840	-0.262679	-0.790403

Atoms	Х	Y	Ζ
С	2.918150	-0.164259	-1.378444
Н	2.986914	-0.130661	-2.458069
\mathbf{C}	4.071209	-0.096972	-0.610251
\mathbf{C}	3.978627	-0.133395	0.777179
\mathbf{C}	2.738565	-0.247519	1.385137
Н	-3.916676	-2.042530	-1.181551
Н	-1.992819	-1.248709	-2.508805
Н	-1.688502	-1.307857	2.414191
Н	-3.775937	-2.067205	1.297286
Н	5.036263	-0.015713	-1.089359
Н	4.870415	-0.081035	1.385269
Н	2.637489	-0.291298	2.459923
Ο	0.394945	-0.415335	1.269897
\mathbf{C}	0.393763	-0.273117	-1.602313
Н	0.155257	0.749219	-1.911864
Н	0.536618	-0.852635	-2.515817
Ο	-0.867607	2.820114	-1.216765
Н	-0.605504	2.787873	-0.273129
Н	-0.786126	3.736974	-1.487222
Ο	-3.151910	1.755455	0.123665
Н	-3.308203	0.826390	-0.072281
Н	-2.596363	2.086535	-0.600780
Ο	-0.762342	2.355600	1.492088
Н	-0.278237	1.560450	1.739323
Н	-1.675863	2.061942	1.320645

Х Υ Ζ Atoms С -3.485900-0.854566-0.451862С -2.326750-1.343139-1.041743С -1.097876-1.259107-0.392848С -1.057598-0.6491730.857490С -2.205781-0.1577061.464243С -3.421612-0.2678000.809589С 1.288077 -0.5051020.829323С 1.374581-1.112548-0.420178С 2.588570-1.044592-1.099606Η 2.667514-1.502567-2.077212С 3.690053-0.409294-0.541082С 3.5825310.1747140.717414 С 2.3787730.1344321.402866 Η -4.431288-0.933263-0.969048Η -2.372295-1.805143-2.019573Η -2.1211980.321634 2.427955Η -4.3169960.118919 1.274874 Η 4.623272-0.367617-1.083779Η 4.4320680.6767341.157940Η 2.2585280.6061282.366733Ο 0.118734-0.4993931.547734 С -0.9753500.169918-1.822340Η -1.7523610.153793-2.063489Η 0.235228-2.890966-0.738763

Table S25: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_3$ complex, 3w-IV.
Atoms	Х	Y	Ζ
Ο	-1.835142	2.105577	-1.346517
Η	-0.950611	1.936150	-1.716102
Η	-2.267244	1.247881	-1.284013
Ο	0.974458	2.046029	-1.563072
Η	0.842226	2.392616	-0.663659
Η	1.544781	1.278497	-1.460695
Ο	-0.294506	2.827463	0.840314
Η	-0.395001	3.746038	1.098501
Η	-1.039683	2.635434	0.236409

2.5 Cartesian coordinates of the xanthene- $(H_2O)_4$ complexes

Table S26: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_4$ complex, 4w-I.

Atoms	Х	Y	Ζ
С	-3.612773	0.583326	0.633710
\mathbf{C}	-2.467894	0.616203	1.417641
\mathbf{C}	-1.221576	0.904916	0.869642
\mathbf{C}	-1.150900	1.146463	-0.498647
\mathbf{C}	-2.284910	1.116725	-1.301590
\mathbf{C}	-3.517591	0.839638	-0.732532
\mathbf{C}	1.207322	1.117551	-0.494176
\mathbf{C}	1.266257	0.873293	0.874273
С	2.503701	0.554433	1.426908

Atoms	Х	Y	Z
Н	2.561979	0.349011	2.487802
\mathbf{C}	3.650425	0.492212	0.646387
\mathbf{C}	3.566204	0.750890	-0.720037
\mathbf{C}	2.343419	1.059592	-1.292631
Н	-4.570468	0.360004	1.081295
Н	-2.534290	0.408805	2.477478
Н	-2.177618	1.297725	-2.360735
Н	-4.401202	0.814400	-1.354308
Н	4.601023	0.246891	1.097755
Н	4.450890	0.702700	-1.338814
Н	2.244570	1.243646	-2.352067
Ο	0.033106	1.421863	-1.132379
\mathbf{C}	0.021646	0.965966	1.713477
Н	0.008722	0.156507	2.443648
Н	0.032547	1.903773	2.280584
Ο	-1.980910	-2.336954	-0.292905
Н	-1.369870	-2.197840	-1.047565
Н	-2.551188	-1.562329	-0.269345
Ο	-0.145894	-2.402007	1.693677
Н	-0.890555	-2.389013	1.044764
Н	-0.250810	-3.212394	2.196343
Ο	0.009773	-1.912541	-2.128696
Н	0.771972	-2.067276	-1.524401
Н	0.135486	-2.503246	-2.873594
Ο	1.869000	-2.376495	-0.206370
Н	1.258586	-2.407563	0.558377

Atoms	Х	Υ	Ζ	
Н	2.479540	-1.656552	-0.019814	

Table S27: Cartesian coordinates for the equilibrium structure of the xanthene-(H₂O)₄ complex, 4w-II.

Atoms	Х	Y	Ζ	
С	-3.672860	0.587350	0.693746	
С	-2.516735	0.568899	1.460543	
С	-1.264899	0.810326	0.899055	
С	-1.207788	1.064139	-0.466065	
С	-2.354412	1.095394	-1.251199	
С	-3.588503	0.857099	-0.669952	
С	1.166802	1.083061	-0.468728	
С	1.231157	0.834978	0.897142	
С	2.487770	0.618635	1.457434	
Н	2.553265	0.408908	2.516978	
С	3.641992	0.654290	0.688771	
С	3.550475	0.915895	-0.676225	
С	2.311252	1.129868	-1.256445	
Н	-4.631518	0.395521	1.153567	
Н	-2.576775	0.354956	2.519634	
Н	-2.259417	1.295488	-2.308657	
Н	-4.480556	0.875603	-1.279398	
Н	4.604791	0.481899	1.147701	
Н	4.441053	0.947543	-1.287372	
Н	2.210715	1.323433	-2.314577	
Ο	-0.022826	1.271845	-1.133563	

Atoms	Х	Y	Ζ
\mathbf{C}	-0.015951	0.790141	1.735750
Н	-0.006176	-0.112332	2.348830
Н	-0.024034	1.639973	2.426174
Ο	0.044179	-1.682420	-2.187207
Н	-0.030994	-0.730852	-2.297328
Н	-0.731604	-1.941384	-1.644291
О	1.974607	-2.351784	-0.345250
Н	2.597903	-1.625674	-0.252141
Н	1.397790	-2.116234	-1.104789
Ο	-1.911917	-2.387975	-0.366527
Н	-2.531582	-1.683335	-0.156750
Н	-1.326843	-2.468749	0.413112
О	0.076103	-2.552868	1.570951
Н	0.176804	-3.404179	2.002050
Н	0.834365	-2.480265	0.942257

Table S28: Cartesian coordinates for the equilibrium structure of the xanthene- $(H_2O)_4$ complex, 4w-III.

Atoms	Х	Y	Ζ	
С	-4.382454	0.015360	0.387042	
\mathbf{C}	-3.342825	0.695548	1.004630	
С	-2.035360	0.598786	0.536705	
\mathbf{C}	-1.807474	-0.185693	-0.587401	
\mathbf{C}	-2.831954	-0.874469	-1.221176	
\mathbf{C}	-4.122892	-0.776879	-0.726251	
\mathbf{C}	0.415477	0.607267	-0.812783	

Atoms	Х	Y	Ζ
С	0.291427	1.435344	0.297699
\mathbf{C}	1.303026	2.362797	0.530817
Н	1.218473	3.022673	1.384484
\mathbf{C}	2.414803	2.443021	-0.298645
\mathbf{C}	2.524815	1.583074	-1.388008
\mathbf{C}	1.520539	0.665773	-1.650385
Η	-5.388683	0.101274	0.771288
Н	-3.540768	1.308743	1.874305
Н	-2.604423	-1.471201	-2.092653
Н	-4.925059	-1.311707	-1.214423
Н	3.188124	3.170874	-0.098376
Н	3.390037	1.627242	-2.033425
Н	1.584284	-0.012719	-2.487898
Ο	-0.543963	-0.331703	-1.127852
\mathbf{C}	-0.879992	1.271234	1.225225
Н	-0.565460	0.657442	2.075149
Η	-1.186799	2.238496	1.625321
Ο	0.732514	-2.774183	-0.121342
Η	1.665002	-2.690308	-0.409124
Η	0.237266	-2.174528	-0.691602
Ο	0.865456	-1.441639	2.226001
Н	0.740027	-1.996464	1.417919
Η	0.779559	-2.034021	2.975454
Ο	3.360238	-2.164421	-0.692338
Н	3.461309	-1.508839	0.034975
Н	4.087287	-2.783275	-0.600781

Atoms	Х	Y	Ζ	
О	3.301358	-0.412856	1.401234	
Η	2.470935	-0.717888	1.820008	
Н	3.112441	0.472940	1.074644	

Table S29: Cartesian coordinates for the equilibrium structure of the xanthene-(H₂O)₄ complex, 4w-IV.

Atoms	Х	Y	Ζ	
С	-4.405609	-0.003983	-0.389730	
\mathbf{C}	-3.368173	0.684990	-1.001868	
\mathbf{C}	-2.058411	0.575246	-0.544089	
\mathbf{C}	-1.825844	-0.229430	0.564846	
\mathbf{C}	-2.847629	-0.926651	1.192953	
\mathbf{C}	-4.141365	-0.816988	0.707241	
\mathbf{C}	0.387002	0.579421	0.811608	
С	0.256118	1.429783	-0.281231	
С	1.246735	2.386267	-0.481329	
Η	1.156699	3.063201	-1.320883	
\mathbf{C}	2.346448	2.473700	0.363537	
\mathbf{C}	2.465329	1.590837	1.433615	
\mathbf{C}	1.480849	0.642942	1.662697	
Η	-5.414036	0.091348	-0.765936	
Н	-3.570115	1.314381	-1.858928	
Н	-2.616685	-1.538832	2.052754	
Η	-4.942087	-1.358407	1.190540	
Η	3.103594	3.225204	0.190383	
Η	3.321777	1.640897	2.090311	

Atoms	Х	Y	Ζ
Н	1.551262	-0.053095	2.485109
Ο	-0.557202	-0.386735	1.091386
С	-0.901098	1.253019	-1.224086
Н	-1.209902	2.215240	-1.634068
Н	-0.569767	0.636577	-2.066145
Ο	3.349665	-0.319717	-1.345583
Η	3.505030	-0.947675	-0.608611
Η	3.213078	0.536358	-0.926872
Ο	1.027708	-1.337058	-2.289893
Η	1.884233	-0.914499	-2.040084
Η	1.176501	-1.767468	-3.134163
Ο	3.387349	-2.158724	0.692390
Н	2.465226	-2.480090	0.560995
Н	3.946864	-2.937562	0.708293
Ο	0.813909	-2.784498	0.074945
Н	0.794720	-2.394020	-0.821733
Н	0.226530	-2.218812	0.589625

3 Measured rotational transitions

3.1 Frequency lists of the xanthene monomer

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	1	4	0	4	1	2046.611	2046.607	3.8
4	1	3	0	4	0	4	0	2047.879	2047.879	-0.2
5	1	4	1	5	0	5	1	2294.234	2294.224	10.0
5	1	4	0	5	0	5	0	2295.528	2295.531	-3.8
1	1	1	1	0	0	0	1	2416.288	2416.292	-4.4
1	1	1	0	0	0	0	0	2417.235	2417.235	-0.7
6	1	5	0	6	0	6	0	2613.765	2613.773	-8.5
5	0	5	0	4	1	4	0	2955.548	2955.544	3.9
5	0	5	1	4	1	4	1	2957.739	2957.747	-7.8
7	1	6	0	7	0	7	0	3010.105	3010.129	-23.9
2	1	2	1	1	0	1	1	3186.790	3186.795	-5.5
2	1	2	0	1	0	1	0	3187.485	3187.487	-2.0
3	1	3	1	2	0	2	1	3918.073	3918.069	4.1
3	1	3	0	2	0	2	0	3918.502	3918.503	-1.3
6	0	6	0	5	1	5	0	3919.075	3919.068	6.6
6	0	6	1	5	1	5	1	3921.402	3921.404	-2.2
6	2	4	1	6	1	5	1	4200.993	4200.995	-2.1
6	2	4	0	6	1	5	0	4204.315	4204.306	8.5
5	2	3	1	5	1	4	1	4328.484	4328.482	1.7
5	2	3	0	5	1	4	0	4331.879	4331.877	2.5
4	2	2	1	4	1	3	1	4463.460	4463.456	4.6
4	2	2	0	4	1	3	0	4466.910	4466.914	-3.1
3	2	1	1	3	1	2	1	4590.885	4590.885	0.2
3	2	1	0	3	1	2	0	4594.387	4594.388	-1.3

Table S30: Assigned rotational transitions for the monomer of xanthene.

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	1	4	0	3	0	3	0	4614.206	4614.206	-0.3
2	2	0	1	2	1	1	1	4697.981	4697.980	1.7
2	2	0	0	2	1	1	0	4701.513	4701.514	-1.1
7	0	7	0	6	1	6	0	4876.953	4876.948	5.2
7	0	7	1	6	1	6	1	4879.390	4879.387	2.9
2	2	1	1	2	1	2	1	4937.351	4937.350	0.9
2	2	1	0	2	1	2	0	4940.950	4940.941	9.1
3	2	2	1	3	1	3	1	5060.431	5060.435	-3.8
3	2	2	0	3	1	3	0	5064.063	5064.054	8.8
4	2	3	1	4	1	4	1	5225.558	5225.570	-12.2
4	2	3	0	4	1	4	0	5229.241	5229.226	14.6
5	1	5	0	4	0	4	0	5280.838	5280.840	-2.3
8	0	8	0	7	1	7	0	5820.403	5820.390	12.7
8	0	8	1	7	1	7	1	5822.910	5822.903	6.4
6	1	6	0	5	0	5	0	5926.679	5926.690	-10.5
2	2	1	1	1	1	0	1	6478.351	6478.359	-7.8
2	2	1	0	1	1	0	0	6481.442	6481.443	-1.4
7	1	7	0	6	0	6	0	6561.381	6561.395	-13.9
2	2	0	0	1	1	1	0	6565.318	6565.316	2.0
9	0	9	0	8	1	8	0	6743.230	6743.222	8.5
9	0	9	1	8	1	8	1	6745.779	6745.784	-4.8
8	1	8	0	7	0	7	0	7194.797	7194.811	-14.0
10	3	7	1	10	2	8	1	7239.904	7239.903	0.5
10	3	7	0	10	2	8	0	7245.893	7245.876	17.0
3	2	2	1	2	1	1	1	7248.859	7248.860	-1.3
3	2	2	0	2	1	1	0	7251.700	7251.698	1.5

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
9	3	6	1	9	2	7	1	7452.803	7452.806	-2.6
9	3	6	0	9	2	7	0	7458.806	7458.807	-1.1
3	2	1	1	2	1	2	1	7506.497	7506.496	0.6
3	2	1	0	2	1	2	0	7509.396	7509.386	10.0
8	3	5	1	8	2	6	1	7633.595	7633.593	1.5
8	3	5	0	8	2	6	0	7639.585	7639.596	-10.6
10	0	10	0	9	1	9	0	7642.391	7642.385	5.7
7	3	4	1	7	2	5	1	7776.445	7776.442	2.8
7	3	4	0	7	2	5	0	7782.434	7782.431	2.4
9	1	9	0	8	0	8	0	7835.620	7835.632	-11.4
6	3	3	1	6	2	4	1	7880.760	7880.766	-6.1
6	3	3	0	6	2	4	0	7886.728	7886.737	-9.4
5	3	2	1	5	2	3	1	7950.400	7950.400	-0.3
5	3	2	0	5	2	3	0	7956.349	7956.354	-5.7
4	2	3	1	3	1	2	1	7978.534	7978.523	11.1
4	2	3	0	3	1	2	0	7981.120	7981.112	7.5
4	3	1	1	4	2	2	1	7992.064	7992.059	5.4
4	3	1	0	4	2	2	0	7997.997	7998.001	-4.2

Table S31: Assigned rotational transitions for the ${\rm ^{13}C_1}$ isotopologue of the monomer of xanthene.

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	0	4	0	4	0	2033.777	2033.785	-7.8
5	1	4	0	5	0	5	0	2280.679	2280.695	-16.4

J'	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
1	1	1	0	0	0	0	0	2399.780	2399.786	-6.3
2	1	2	0	1	0	1	0	3165.347	3165.348	-0.6
3	1	3	0	2	0	2	0	3891.823	3891.825	-1.8
6	0	6	0	5	1	5	0	3899.449	3899.455	-5.9
6	0	6	1	5	1	5	1	3901.753	3901.746	7.5
4	2	2	0	4	1	3	0	4430.604	4430.605	-0.7
3	2	1	0	3	1	2	0	4557.458	4557.466	-8.1
7	0	7	0	6	1	6	0	4851.477	4851.470	6.8
5	1	5	0	4	0	4	0	5245.545	5245.544	1.3
5	1	5	1	4	0	4	1	5246.240	5246.237	2.4
5	2	4	1	5	1	5	1	5393.370	5393.370	0.1
5	2	4	0	5	1	5	0	5397.076	5397.052	24.6
8	0	8	0	7	1	7	0	5788.977	5788.977	0.1
6	1	6	0	5	0	5	0	5887.325	5887.317	7.4
2	2	1	0	1	1	0	0	6433.783	6433.786	-3.0
7	1	7	0	6	0	6	0	6518.101	6518.094	7.2
9	0	9	0	8	1	8	0	6705.860	6705.862	-2.1
9	0	9	1	8	1	8	1	6708.596	6708.603	-6.4
8	1	8	0	7	0	7	0	7147.696	7147.705	-9.3
3	2	2	0	2	1	1	0	7199.350	7199.351	-0.7
7	3	4	0	7	2	5	0	7719.443	7719.446	-2.4

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	1	4	0	4	1	2042.120	2042.107	13.14
4	1	3	0	4	0	4	0	2043.377	2043.379	-2.21
1	1	1	0	0	0	0	0	2411.640	2411.650	-10.15
6	1	5	0	6	0	6	0	2609.194	2609.207	-13.24
5	0	5	0	4	1	4	0	2953.227	2953.218	8.68
2	1	2	1	1	0	1	1	3180.011	3180.006	4.71
2	1	2	0	1	0	1	0	3180.681	3180.684	-2.74
3	1	3	1	2	0	2	1	3910.077	3910.086	-8.67
3	1	3	0	2	0	2	0	3910.504	3910.506	-2.22
6	0	6	0	5	1	5	0	3915.252	3915.244	8.02
6	0	6	1	5	1	5	1	3917.546	3917.547	-1.33
6	2	4	1	6	1	5	1	4188.817	4188.825	-8.48
6	2	4	0	6	1	5	0	4192.093	4192.085	8.11
5	2	3	1	5	1	4	1	4316.005	4316.009	-3.22
5	2	3	0	5	1	4	0	4319.353	4319.351	1.99
4	2	2	1	4	1	3	1	4450.774	4450.767	6.58
4	1	4	1	3	0	3	1	4604.899	4604.887	12.13
4	1	4	0	3	0	3	0	4605.042	4605.044	-2.82
7	0	7	0	6	1	6	0	4871.563	4871.555	7.13
4	2	3	0	4	1	4	0	5215.990	5215.983	6.52
5	1	5	0	4	0	4	0	5270.551	5270.554	-3.12
5	2	4	1	5	1	5	1	5420.103	5420.105	-2.2
8	0	8	0	7	1	7	0	5813.366	5813.371	-5.45
6	1	6	0	5	0	5	0	5915.321	5915.332	-11.81

Table S32: Assigned rotational transitions for the $^{13}\mathrm{C}_2$ isotopologue of the monomer of xanthene.

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
2	2	0	1	1	1	1	1	6546.652	6546.676	-24.02
7	1	7	0	6	0	6	0	6549.042	6549.027	14.77
8	1	8	0	7	0	7	0	7181.482	7181.496	-13.64
3	2	2	1	2	1	1	1	7232.144	7232.145	-0.71
3	2	2	0	2	1	1	0	7234.946	7234.943	2.28
3	2	1	1	2	1	2	1	7489.678	7489.669	8.73
3	2	1	0	2	1	2	0	7492.524	7492.527	-3.21
7	3	4	1	7	2	5	1	7754.485	7754.476	9.09
7	3	4	0	7	2	5	0	7760.375	7760.381	-5.97
5	3	2	0	5	2	3	0	7934.510	7934.508	1.68
4	2	3	0	3	1	2	0	7963.168	7963.160	7.68
4	3	1	0	4	2	2	0	7976.220	7976.217	3.03

Table S33: Assigned rotational transitions for the ${}^{13}C_3$ isotopologue of the monomer of xanthene.

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	0	4	0	4	0	2044.729	2044.723	5.8
1	1	1	1	0	0	0	1	2412.518	2412.525	-6.5
1	1	1	0	0	0	0	0	2413.454	2413.457	-3.2
6	1	5	0	6	0	6	0	2610.097	2610.099	-1.3
2	1	2	1	1	0	1	1	3182.010	3182.018	-8.4
2	1	2	0	1	0	1	0	3182.697	3182.694	3.8
3	1	3	1	2	0	2	1	3912.312	3912.325	-13.5
3	1	3	0	2	0	2	0	3912.739	3912.736	2.3

J,	K_a	K_c	v'	J"	K_a "	K <i>c</i> "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	0	6	0	5	1	5	0	3914.653	3914.643	9.4
6	0	6	1	5	1	5	1	3916.960	3916.962	-2.4
6	2	4	1	6	1	5	1	4193.656	4193.663	-6.8
6	2	4	0	6	1	5	0	4196.949	4196.931	18.7
4	1	4	1	3	0	3	1	4607.355	4607.364	-8.9
4	1	4	0	3	0	3	0	4607.509	4607.506	2.5
7	0	7	0	6	1	6	0	4871.260	4871.237	22.8
5	1	5	0	4	0	4	0	5273.245	5273.244	0.4
5	1	5	1	4	0	4	1	5273.394	5273.375	18.2
8	0	8	0	7	1	7	0	5813.366	5813.389	-23.2
6	1	6	0	5	0	5	0	5918.228	5918.233	-5.0
2	2	1	1	1	1	0	1	6468.058	6468.066	-8.6
2	2	1	0	1	1	0	0	6471.123	6471.124	-0.8
2	2	0	1	1	1	1	1	6551.846	6551.832	14.7
7	1	7	0	6	0	6	0	6552.100	6552.104	-3.9
8	1	8	0	7	0	7	0	7184.712	7184.707	4.9
3	2	2	1	2	1	1	1	7237.563	7237.558	4.8
3	2	2	0	2	1	1	0	7240.353	7240.364	-11.3
7	3	4	0	7	2	5	0	7763.028	7768.950	-3.2
7	3	4	1	7	2	5	1	7768.947	7763.026	1.4
5	3	2	0	5	2	3	0	7942.785	7942.782	3.2
4	2	3	1	3	1	2	1	7966.254	7966.255	-1.1
4	3	1	0	4	2	2	0	7984.408	7984.410	-2.5

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
1	1	1	0	0	0	0	0	2399.191	2399.195	-4.69
1	1	1	1	0	0	0	1	2398.255	2398.271	-16
2	1	2	0	1	0	1	0	3165.151	3165.161	-9.71
3	1	3	1	2	0	2	1	3891.404	3891.380	24.14
3	1	3	0	2	0	2	0	3891.975	3891.974	1.66
6	0	6	0	5	1	5	0	3904.154	3904.154	0.72
6	0	6	1	5	1	5	1	3906.085	3906.087	-1.71
5	2	3	0	5	1	4	0	4292.540	4292.536	4.02
4	2	2	0	4	1	3	0	4426.886	4426.883	2.44
4	1	4	1	3	0	3	1	4583.140	4583.138	1.95
4	2	3	0	4	1	4	0	5187.451	5187.455	-3.55
5	1	5	0	4	0	4	0	5246.240	5246.236	3.45
5	2	4	0	5	1	5	0	5395.010	5394.997	13.18
8	0	8	0	7	1	7	0	5794.491	5794.489	1.89
6	1	6	0	5	0	5	0	5888.287	5888.280	7.19
2	2	1	0	1	1	0	0	6431.602	6431.608	-6.42
2	2	0	0	1	1	1	0	6515.335	6515.344	-9.31
7	1	7	0	6	0	6	0	6519.373	6519.369	4.39
7	1	7	1	6	0	6	1	6519.373	6519.406	-32.27
3	2	2	1	2	1	1	1	7194.797	7194.798	-1.72
3	2	2	0	2	1	1	0	7197.584	7197.578	6.03
3	2	1	0	2	1	2	0	7454.869	7454.881	-12.14
4	2	3	0	3	1	2	0	7922.790	7922.780	9.46

Table S34: Assigned rotational transitions for the $^{13}\mathrm{C}_4$ isotopologue of the monomer of xanthene.

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	0	4	0	4	0	2038.041	2038.048	-7.0
1	1	1	1	0	0	0	1	2407.031	2407.038	-6.6
1	1	1	0	0	0	0	0	2407.975	2407.974	0.9
6	1	5	0	6	0	6	0	2591.266	2591.283	-16.7
5	0	5	0	4	1	4	0	2906.263	2906.255	8.4
5	0	5	1	4	1	4	1	2908.423	2908.430	-6.9
2	1	2	1	1	0	1	1	3169.869	3169.867	2.6
2	1	2	0	1	0	1	0	3170.550	3170.552	-1.9
6	0	6	0	5	1	5	0	3859.936	3859.931	5.0
6	0	6	1	5	1	5	1	3862.231	3862.237	-5.7
3	1	3	1	2	0	2	1	3894.179	3894.187	-7.9
3	1	3	0	2	0	2	0	3894.614	3894.615	-0.9
8	2	6	1	8	1	7	1	4034.260	4034.265	-5.3
7	2	5	1	7	1	6	1	4101.326	4101.333	-7.0
6	2	4	1	6	1	5	1	4206.137	4206.141	-3.7
6	2	4	0	6	1	5	0	4209.425	4209.420	4.8
5	2	3	1	5	1	4	1	4333.175	4333.178	-2.8
5	2	3	0	5	1	4	0	4336.537	4336.539	-2.0
4	2	2	1	4	1	3	1	4466.783	4466.776	6.8
4	2	2	0	4	1	3	0	4470.198	4470.200	-2.1
4	1	4	0	3	0	3	0	4583.936	4583.939	-3.3
3	2	1	1	3	1	2	1	4592.412	4592.403	8.3

Table S35: Assigned rotational transitions for the $^{13}\mathrm{C}_5$ isotopologue of the monomer of xanthene.

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	2	1	0	3	1	2	0	4595.874	4595.875	-1.0
7	0	7	0	6	1	6	0	4808.673	4808.675	-1.9
7	0	7	1	6	1	6	1	4811.079	4811.083	-4.2
3	2	2	0	3	1	3	0	5056.918	5056.929	-10.7
5	1	5	0	4	0	4	0	5244.539	5244.538	0.8
5	1	5	1	4	0	4	1	5244.648	5244.635	13.3
5	2	4	1	5	1	5	1	5419.103	5419.097	6.5
5	2	4	0	5	1	5	0	5422.814	5422.788	25.5
8	0	8	1	7	1	7	1	5746.308	5746.293	14.8
6	1	6	0	5	0	5	0	5884.413	5884.406	6.5
2	2	1	0	1	1	0	0	6461.315	6461.333	-18.1
7	1	7	0	6	0	6	0	6512.865	6512.876	-11.1
2	2	0	0	1	1	1	0	6543.568	6543.564	4.0
9	0	9	1	8	1	8	1	6661.651	6661.656	-4.8
8	1	8	0	7	0	7	0	7139.550	7139.554	-4.1
3	2	2	1	2	1	1	1	7221.091	7221.098	-6.9
3	2	2	0	2	1	1	0	7223.923	7223.914	8.8
3	2	1	0	2	1	2	0	7476.446	7476.452	-5.1
4	2	3	1	3	1	2	1	7943.866	7943.866	0.2
4	2	3	0	3	1	2	0	7946.446	7946.435	11.0

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	1	4	0	4	1	2037.898	2037.897	0.7
4	1	3	0	4	0	4	0	2039.139	2039.148	-8.4
5	1	4	1	5	0	5	1	2279.410	2279.408	1.3
5	1	4	0	5	0	5	0	2280.679	2280.694	-15.1
1	1	1	1	0	0	0	1	2408.879	2408.889	-9.6
1	1	1	0	0	0	0	0	2409.817	2409.819	-2.2
5	0	5	0	4	1	4	0	2901.932	2901.927	4.8
5	0	5	1	4	1	4	1	2904.074	2904.086	-12.2
2	1	2	1	1	0	1	1	3171.500	3171.507	-6.7
2	1	2	0	1	0	1	0	3172.192	3172.192	0.0
6	0	6	0	5	1	5	0	3855.262	3855.266	-4.1
3	1	3	1	2	0	2	1	3895.695	3895.692	2.8
3	1	3	0	2	0	2	0	3896.124	3896.128	-3.3
6	2	4	0	6	1	5	0	4216.374	4216.365	9.1
4	2	2	1	4	1	3	1	4473.762	4473.765	-2.6
4	2	2	0	4	1	3	0	4477.164	4477.170	-5.4
2	2	0	1	2	1	1	1	4704.389	4704.387	1.5
2	2	0	0	2	1	1	0	4707.863	4707.866	-3.6
7	0	7	0	6	1	6	0	4803.801	4803.795	5.6
7	0	7	1	6	1	6	1	4806.192	4806.184	7.8
4	2	3	0	4	1	4	0	5224.455	5224.451	3.7
5	1	5	0	4	0	4	0	5245.931	5245.931	-0.1
5	2	4	0	5	1	5	0	5427.895	5427.876	19.0
6	1	6	0	5	0	5	0	5885.734	5885.732	1.8

Table S36: Assigned rotational transitions for the $^{13}\mathrm{C}_6$ isotopologue of the monomer of xanthene.

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
7	1	7	0	6	0	6	0	6514.066	6514.074	-8.4
9	0	9	0	8	1	8	0	6654.197	6654.193	3.4
8	1	8	0	7	0	7	0	7140.531	7140.530	1.4
3	2	2	1	2	1	1	1	7226.643	7226.650	-7.7
3	2	1	0	2	1	2	0	7481.388	7481.403	-14.9
4	2	3	1	3	1	2	1	7949.304	7949.293	11.0
4	2	3	0	3	1	2	0	7951.858	7951.852	6.1

Table S37: Assigned rotational transitions for the ${\rm ^{13}C_7}$ isotopologue of the monomer of xanthene.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	4	0	4	2031.172	2031.19328	-21.2
1	1	1	0	0	0	2394.982	2394.98495	-3.0
5	0	5	4	1	4	2973.562	2973.56468	-2.3
2	1	2	1	0	1	3163.820	3163.82927	-9.3
3	1	3	2	0	2	3893.136	3893.13651	-0.9
6	0	6	5	1	5	3935.502	3935.5024	-0.1
4	2	2	4	1	3	4401.547	4401.5359	11.3
4	1	4	3	0	3	4586.938	4586.9495	-11.5
7	0	7	6	1	6	4891.020	4891.02313	-2.8
3	2	2	3	1	3	5002.599	5002.59619	2.6
5	1	5	4	0	4	5251.695	5251.70087	-6.3
8	0	8	7	1	7	5831.344	5831.33249	11.3
6	1	6	5	0	5	5895.895	5895.90813	-13.2

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
2	2	0	1	1	1	6500.740	6500.74198	-2.3
7	1	7	6	0	6	6529.422	6529.43719	-14.9
9	0	9	8	1	8	6750.410	6750.40524	5.2
8	1	8	7	0	7	7162.315	7162.29728	17.8
3	2	2	2	1	1	7184.951	7184.94724	4.1
4	2	3	3	1	2	7912.611	7912.60326	7.7

3.2 Frequency lists of the xanthene- H_2O complexes

Table S38: Assigned rotational transitions for the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	2	2	0	3	1	3	0	2028.491	2028.493	-2.1
3	2	2	1	3	1	3	1	2028.491	2028.493	-2.1
8	3	5	0	8	2	6	0	2073.021	2073.021	-0.3
8	3	5	1	8	2	6	1	2073.021	2073.021	-0.3
5	3	2	1	5	2	3	1	2147.219	2147.220	-1.0
5	3	2	0	5	2	3	0	2147.219	2147.220	-1.0
5	1	4	0	5	0	5	0	2163.093	2163.079	13.3
5	1	4	1	5	0	5	1	2163.093	2163.079	13.3
4	1	3	0	3	2	2	0	2200.631	2200.630	1.1
4	1	3	1	3	2	2	1	2200.631	2200.630	1.1
7	2	5	0	7	1	6	0	2272.159	2272.149	9.4
7	2	5	1	7	1	6	1	2272.159	2272.149	9.4
2	1	1	0	1	0	1	1	2307.626	2307.619	7.4

J'	K_a	K_c	\mathbf{v}	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
2	1	1	1	1	0	1	0	2307.676	2307.678	-1.9
4	3	1	1	4	2	2	1	2337.382	2337.385	-3.1
4	3	1	0	4	2	2	0	2337.382	2337.385	-3.1
4	2	3	0	4	1	4	0	2350.869	2350.865	3.5
4	2	3	1	4	1	4	1	2350.869	2350.865	3.5
3	1	3	1	2	0	2	1	2438.000	2438.002	-1.8
3	1	3	0	2	0	2	0	2438.000	2438.002	-1.8
3	3	0	1	3	2	1	1	2488.467	2488.466	1.4
3	3	0	0	3	2	1	0	2488.467	2488.466	1.4
8	3	6	1	7	4	3	1	2540.361	2540.367	-5.8
8	3	6	1	7	4	3	1	2540.361	2540.367	-5.8
7	3	4	1	6	4	3	1	2543.156	2543.156	0.3
7	3	4	0	6	4	3	0	2543.156	2543.156	0.3
10	4	6	1	10	3	7	1	2562.064	2562.067	-2.7
10	4	6	0	10	3	7	0	2562.064	2562.067	-2.7
3	3	1	0	3	2	2	0	2630.622	2630.619	3.3
3	3	1	1	3	2	2	1	2630.622	2630.619	3.3
9	4	6	0	8	5	3	0	2641.483	2641.487	-4.3
9	4	6	1	8	5	3	1	2641.483	2641.487	-4.3
9	4	5	1	9	3	6	1	2649.559	2649.564	-5.0
9	4	5	0	9	3	6	0	2649.559	2649.564	-5.0
4	0	4	1	3	1	3	1	2667.766	2667.767	-1.1
4	0	4	0	3	1	3	0	2667.766	2667.767	-1.1
11	4	7	1	11	3	8	1	2672.066	2672.074	-7.8
11	4	7	0	11	3	8	0	2672.066	2672.074	-7.8
4	3	2	0	4	2	3	0	2706.095	2706.095	0.1

J'	K_a	K_c	v'	J"	K_a "	K <i>c</i> "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	3	2	1	4	2	3	1	2706.095	2706.095	0.1
4	3	1	0	4	2	3	1	2734.263	2734.263	0.5
4	3	1	1	4	2	3	0	2734.309	2734.310	-1.4
5	2	4	1	5	1	5	1	2751.364	2751.355	9.6
5	2	4	0	5	1	5	0	2751.364	2751.355	9.6
5	1	4	0	4	2	2	1	2800.693	2800.692	0.6
5	1	4	1	4	2	2	0	2800.748	2800.744	3.5
6	1	5	0	6	0	6	0	2834.525	2834.508	17.5
6	1	5	1	6	0	6	1	2834.525	2834.508	17.5
5	3	3	1	5	2	4	1	2844.438	2844.437	1.4
5	3	3	0	5	2	4	0	2844.438	2844.437	1.4
8	4	4	1	8	3	5	1	2869.310	2869.310	-0.3
8	4	4	0	8	3	5	0	2869.310	2869.310	-0.3
8	2	6	0	8	1	7	0	2919.575	2919.561	13.9
8	2	6	1	8	1	7	1	2919.575	2919.561	13.9
10	3	7	1	10	2	8	1	2938.661	2938.662	-0.9
10	3	7	0	10	2	8	0	2938.661	2938.662	-0.9
5	3	2	0	5	2	4	1	2951.261	2951.262	-0.9
5	3	2	1	5	2	4	0	2951.318	2951.308	9.2
4	1	4	1	3	0	3	1	2988.552	2988.550	1.8
4	1	4	0	3	0	3	0	2988.552	2988.550	1.8
9	3	7	0	8	4	4	0	3026.425	3026.424	2.0
9	3	7	1	8	4	4	1	3026.425	3026.424	2.0
2	2	1	0	1	1	0	0	3057.459	3057.459	0.9
2	2	1	1	1	1	0	1	3057.459	3057.459	0.9
6	3	4	1	6	2	5	1	3059.601	3059.598	3.3

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	3	4	0	6	2	5	0	3059.601	3059.598	3.3
6	2	4	0	5	3	3	0	3071.804	3071.801	3.9
6	2	4	1	5	3	3	1	3071.804	3071.801	3.9
2	2	0	0	1	1	0	1	3088.278	3088.280	-2.2
2	2	0	1	1	1	0	0	3088.338	3088.336	2.1
7	4	3	1	7	3	4	1	3133.126	3133.129	-2.9
7	4	3	0	7	3	4	0	3133.126	3133.129	-2.9
5	1	4	0	4	2	3	0	3197.618	3197.620	-2.0
5	1	4	1	4	2	3	1	3197.618	3197.620	-2.0
2	2	1	0	1	1	1	1	3205.114	3205.125	-11.2
2	2	1	1	1	1	1	0	3205.173	3205.180	-6.9
6	2	5	1	6	1	6	1	3218.616	3218.607	9.8
6	2	5	0	6	1	6	0	3218.616	3218.607	9.8
2	2	0	1	1	1	1	1	3236.002	3236.002	0.1
2	2	0	0	1	1	1	0	3236.002	3236.002	0.1
12	5	7	1	12	4	8	1	3284.183	3284.177	5.4
12	5	7	0	12	4	8	0	3284.183	3284.177	5.4
10	3	8	0	9	4	5	0	3286.093	3286.094	-1.5
10	3	8	1	9	4	5	1	3286.093	3286.094	-1.5
3	1	2	0	2	0	2	1	3320.007	3320.003	3.7
3	1	2	1	2	0	2	0	3320.065	3320.061	3.6
6	1	5	0	5	2	3	1	3342.979	3342.988	-9.2
6	1	5	1	5	2	3	0	3343.041	3343.039	2.5
7	3	5	0	7	2	6	0	3358.151	3358.153	-2.0
7	3	5	1	7	2	6	1	3358.151	3358.153	-2.0
6	4	2	0	6	3	3	0	3359.897	3359.902	-5.1

J'	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	4	2	1	6	3	3	1	3359.897	3359.902	-5.1
5	0	5	1	4	1	4	1	3385.399	3385.406	-6.8
5	0	5	0	4	1	4	0	3385.399	3385.406	-6.8
10	4	7	1	9	5	4	1	3397.835	3397.836	-1.7
10	4	7	0	9	5	4	0	3397.835	3397.836	-1.7
5	4	1	1	5	3	2	1	3508.922	3508.932	-10.5
5	4	1	0	5	3	2	0	3508.922	3508.932	-10.5
7	1	6	0	7	0	7	0	3515.462	3515.451	11.1
7	1	6	1	7	0	7	1	3515.462	3515.451	11.1
5	1	5	1	4	0	4	1	3552.569	3552.573	-4.1
5	1	5	0	4	0	4	0	3552.569	3552.573	-4.1
11	5	6	0	11	4	7	0	3560.245	3560.240	5.0
11	5	6	1	11	4	7	1	3560.245	3560.240	5.0
4	4	0	1	4	3	1	1	3585.841	3585.840	0.9
4	4	0	0	4	3	1	0	3585.841	3585.840	0.9
5	4	2	0	5	3	3	0	3611.731	3611.733	-1.9
5	4	2	0	5	3	3	0	3611.731	3611.733	-1.9
4	4	1	1	4	3	2	1	3613.576	3613.574	2.0
4	4	1	0	4	3	2	0	3613.576	3613.574	2.0
11	3	8	1	11	2	9	1	3631.023	3631.032	-8.9
11	3	8	0	11	2	9	0	3631.023	3631.032	-8.9
6	4	3	0	6	3	4	0	3631.397	3631.395	2.5
6	4	3	1	6	3	4	1	3631.397	3631.395	2.5
9	2	7	1	9	1	8	1	3641.487	3641.487	-0.7
9	2	7	0	9	1	8	0	3641.487	3641.487	-0.7
3	2	2	1	2	1	1	1	3691.506	3691.506	0.4

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
3	2	2	0	2	1	1	0	3691.506	3691.506	0.4
7	4	4	0	7	3	5	0	3692.293	3692.291	2.1
7	4	4	1	7	3	5	1	3692.293	3692.291	2.1
7	2	6	0	7	1	7	0	3737.115	3737.104	10.6
7	2	6	1	7	1	7	1	3737.115	3737.104	10.6
8	3	6	0	8	2	7	0	3738.216	3738.209	6.6
8	3	6	1	8	2	7	1	3738.216	3738.209	6.6
8	3	5	1	7	4	4	1	3742.985	3742.985	0.3
8	3	5	0	7	4	4	0	3742.985	3742.985	0.3
8	4	5	0	8	3	6	0	3814.367	3814.358	8.2
8	4	5	1	8	3	6	1	3814.367	3814.358	8.2
3	2	1	0	2	1	1	1	3837.768	3837.767	1.5
3	2	1	1	2	1	1	0	3837.827	3837.821	5.5
10	5	5	1	10	4	6	1	3890.315	3890.312	2.4
10	5	5	0	10	4	6	0	3890.315	3890.312	2.4
15	6	9	0	15	5	10	0	3900.883	3900.866	16.3
15	6	9	1	15	5	10	1	3900.883	3900.866	16.3
7	3	4	0	7	2	6	1	3985.721	3985.718	2.4
7	3	4	1	7	2	6	0	3985.772	3985.762	10.2
9	4	6	0	9	3	7	0	4013.282	4013.282	0.1
9	4	6	1	9	3	7	1	4013.282	4013.282	0.1
6	0	6	1	5	1	5	1	4063.925	4063.926	-1.2
6	0	6	0	5	1	5	0	4063.925	4063.926	-1.2
3	2	2	0	2	1	2	1	4134.557	4134.561	-4.4
3	2	2	1	2	1	2	0	4134.614	4134.616	-1.4
6	1	6	0	5	0	5	0	4143.040	4143.043	-3.4

J'	K_a	K_c	v'	J"	K_a "	K <i>c</i> "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	1	6	1	5	0	5	1	4143.040	4143.043	-3.4
6	1	5	1	5	2	4	1	4147.084	4147.079	5.0
6	1	5	0	5	2	4	0	4147.084	4147.079	5.0
8	1	7	0	8	0	8	0	4174.920	4174.911	8.7
8	1	7	1	8	0	8	1	4174.920	4174.911	8.7
9	5	4	1	9	4	5	1	4185.523	4185.526	-3.2
9	5	4	0	9	4	5	0	4185.523	4185.526	-3.2
9	3	7	0	9	2	8	0	4190.101	4190.099	2.6
9	3	7	1	9	2	8	1	4190.101	4190.099	2.6
7	2	5	1	6	3	4	1	4228.800	4228.790	10.3
7	2	5	0	6	3	4	0	4228.800	4228.790	10.3
4	2	3	1	3	1	2	1	4249.203	4249.208	-5.2
4	2	3	0	3	1	2	0	4249.203	4249.208	-5.2
3	2	1	1	2	1	2	1	4280.880	4280.876	3.9
3	2	1	0	2	1	2	0	4280.880	4280.876	3.9
8	2	7	0	8	1	8	0	4290.750	4290.738	12.3
8	2	7	1	8	1	8	1	4290.750	4290.738	12.3
10	4	7	1	10	3	8	1	4297.270	4297.269	1.0
10	4	7	0	10	3	8	0	4297.270	4297.269	1.0
10	2	8	0	10	1	9	0	4369.901	4369.900	1.7
10	2	8	1	10	1	9	1	4369.901	4369.900	1.7
8	5	3	0	8	4	4	0	4398.210	4398.218	-8.0
8	5	3	1	8	4	4	1	4398.210	4398.218	-8.0
4	1	3	0	3	0	3	1	4437.277	4437.272	4.8
4	1	3	1	3	0	3	0	4437.332	4437.329	3.4
8	5	4	0	8	4	5	0	4575.144	4575.144	-0.2

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
8	5	4	1	8	4	5	1	4575.144	4575.144	-0.2
9	5	5	0	9	4	6	0	4578.677	4578.677	0.3
9	5	5	1	9	4	6	1	4578.677	4578.677	0.3
7	5	3	0	7	4	4	0	4593.699	4593.702	-2.9
7	5	3	1	7	4	4	1	4593.699	4593.702	-2.9
6	5	2	0	6	4	2	1	4598.945	4598.952	-6.6
6	5	2	1	6	4	2	0	4598.993	4598.999	-5.6
6	5	2	1	6	4	2	0	4598.993	4598.999	-5.6
6	5	1	0	6	4	2	0	4599.469	4599.472	-2.4
6	5	1	1	6	4	2	1	4599.469	4599.472	-2.4
6	5	2	0	6	4	3	0	4618.612	4618.612	0.5
6	5	2	1	6	4	3	1	4618.612	4618.612	0.5
10	5	6	0	10	4	7	0	4624.220	4624.220	0.3
10	5	6	1	10	4	7	1	4624.220	4624.220	0.3
5	5	0	0	5	4	1	0	4636.322	4636.329	-6.7
5	5	0	1	5	4	1	1	4636.322	4636.329	-6.7
5	5	1	0	5	4	2	0	4640.327	4640.332	-4.9
5	5	1	1	5	4	2	1	4640.327	4640.332	-4.9
4	2	2	0	3	1	2	1	4646.084	4646.083	0.8
4	2	2	1	3	1	2	0	4646.139	4646.136	2.7
11	4	8	1	11	3	9	1	4665.668	4665.677	-9.4
11	4	8	0	11	3	9	0	4665.668	4665.677	-9.4
10	3	8	0	10	2	9	0	4698.941	4698.940	0.9
10	3	8	1	10	2	9	1	4698.941	4698.940	0.9
7	0	7	1	6	1	6	1	4719.381	4719.394	-13.0
7	0	7	0	6	1	6	0	4719.381	4719.394	-13.0

J,	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
11	5	7	0	11	4	8	0	4732.002	4731.998	4.1
11	5	7	1	11	4	8	1	4732.002	4731.998	4.1
5	2	4	1	4	1	3	1	4742.568	4742.572	-3.8
5	2	4	0	4	1	3	0	4742.568	4742.572	-3.8
7	1	7	1	6	0	6	1	4754.466	4754.467	-0.6
7	1	7	0	6	0	6	0	4754.466	4754.467	-0.6
9	1	8	0	9	0	9	0	4809.594	4809.585	9.5
9	1	8	1	9	0	9	1	4809.594	4809.585	9.5
3	3	1	1	2	2	0	1	4945.020	4945.018	2.3
3	3	1	0	2	2	0	0	4945.020	4945.018	2.3
3	3	0	0	2	2	0	1	4949.130	4949.128	2.1
3	3	0	1	2	2	0	0	4949.174	4949.176	-1.9
3	3	1	0	2	2	1	1	4975.838	4975.843	-4.9
3	3	1	1	2	2	1	0	4975.896	4975.891	4.7
12	6	6	0	12	5	7	0	4977.617	4977.603	14.7
12	6	6	1	12	5	7	1	4977.617	4977.603	14.7
3	3	0	1	2	2	1	1	4980.004	4980.002	1.9
3	3	0	0	2	2	1	0	4980.004	4980.002	1.9
9	3	6	0	8	4	5	0	5013.186	5013.187	-0.8
9	3	6	1	8	4	5	1	5013.186	5013.187	-0.8
7	1	6	0	6	2	5	0	5016.238	5016.239	-0.7
7	1	6	1	6	2	5	1	5016.238	5016.239	-0.7
12	4	9	1	12	3	10	1	5109.647	5109.661	-14.0
12	4	9	0	12	3	10	0	5109.647	5109.661	-14.0
4	2	3	0	3	1	3	1	5131.213	5131.212	1.3
4	2	3	1	3	1	3	0	5131.264	5131.265	-0.6

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	3	1	1	4	0	4	1	5197.761	5197.758	3.4
4	3	1	0	4	0	4	0	5197.761	5197.758	3.4
6	2	5	1	5	1	4	1	5198.564	5198.571	-6.4
6	2	5	0	5	1	4	0	5198.564	5198.571	-6.4
11	3	9	0	11	2	10	0	5248.256	5248.273	-16.7
11	3	9	1	11	2	10	1	5248.256	5248.273	-16.7
11	6	5	0	11	5	6	0	5248.992	5248.998	-5.9
11	6	5	1	11	5	6	1	5248.992	5248.998	-5.9
8	2	6	0	7	3	5	0	5362.253	5362.254	-1.0
8	2	6	1	7	3	5	1	5362.253	5362.254	-1.0
8	0	8	1	7	1	7	1	5363.038	5363.040	-2.2
8	0	8	0	7	1	7	0	5363.038	5363.040	-2.2
8	1	8	1	7	0	7	1	5377.903	5377.905	-2.3
8	1	8	0	7	0	7	0	5377.903	5377.905	-2.3
10	1	9	0	10	0	10	0	5426.853	5426.839	14.0
10	1	9	1	10	0	10	1	5426.853	5426.839	14.0
10	6	4	0	10	5	5	0	5429.328	5429.330	-2.8
10	6	4	1	10	5	5	1	5429.328	5429.330	-2.8
10	2	9	0	10	1	10	0	5452.831	5452.824	7.1
10	2	9	1	10	1	10	1	5452.831	5452.824	7.1
12	6	7	0	12	5	8	0	5486.840	5486.844	-4.1
12	6	7	1	12	5	8	1	5486.840	5486.844	-4.1
11	6	6	0	11	5	7	0	5499.624	5499.633	-9.2
11	6	6	1	11	5	7	1	5499.624	5499.633	-9.2
13	6	8	1	13	5	9	1	5517.784	5517.778	6.2
13	6	8	0	13	5	9	0	5517.784	5517.778	6.2

J,	K_a	K_c	v'	J"	K_a "	K <i>c</i> "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	2	2	1	3	1	3	1	5528.149	5528.140	9.1
4	2	2	0	3	1	3	0	5528.149	5528.140	9.1
10	6	5	0	10	5	6	0	5536.018	5536.015	2.8
10	6	5	1	10	5	6	1	5536.018	5536.015	2.8
9	6	3	0	9	5	4	0	5540.822	5540.815	7.6
9	6	3	1	9	5	4	1	5540.822	5540.815	7.6
5	2	3	0	4	1	3	1	5546.614	5546.612	2.3
5	2	3	1	4	1	3	0	5546.666	5546.663	3.2
9	6	4	0	9	5	5	0	5579.707	5579.710	-3.0
9	6	4	1	9	5	5	1	5579.707	5579.710	-3.0
8	6	2	0	8	5	3	0	5608.308	5608.310	-2.0
8	6	2	1	8	5	3	1	5608.308	5608.310	-2.0
14	6	9	1	14	5	10	1	5612.790	5612.806	-15.9
14	6	9	0	14	5	10	0	5612.790	5612.806	-15.9
13	4	10	1	13	3	11	1	5614.640	5614.668	-27.4
13	4	10	0	13	3	11	0	5614.640	5614.668	-27.4
8	6	3	0	8	5	4	0	5620.153	5620.154	-1.2
8	6	3	1	8	5	4	1	5620.153	5620.154	-1.2
7	6	1	0	7	5	2	0	5649.471	5649.469	2.2
7	6	1	1	7	5	2	1	5649.471	5649.469	2.2
7	6	2	0	7	5	3	0	5652.329	5652.328	0.8
7	6	2	1	7	5	3	1	5652.329	5652.328	0.8
7	2	6	1	6	1	5	1	5657.059	5657.063	-4.6
7	2	6	0	6	1	5	0	5657.059	5657.063	-4.6
5	1	4	0	4	0	4	1	5661.077	5661.064	12.8
5	1	4	1	4	0	4	0	5661.126	5661.118	7.9

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	3	2	0	3	2	1	0	5662.554	5662.552	2.0
4	3	2	1	3	2	1	1	5662.554	5662.552	2.0
6	6	0	0	6	5	1	0	5674.733	5674.734	-0.6
6	6	0	1	6	5	1	1	5674.733	5674.734	-0.6
6	6	1	0	6	5	2	0	5675.225	5675.226	-0.9
6	6	1	1	6	5	2	1	5675.225	5675.226	-0.9
4	3	1	1	3	2	1	0	5690.744	5690.767	-23.5
12	2	10	1	12	1	11	1	5731.443	5731.453	-9.2
12	2	10	0	12	1	11	0	5731.443	5731.453	-9.2
8	1	7	1	7	2	6	1	5800.842	5800.847	-4.7
8	1	7	0	7	2	6	0	5800.842	5800.847	-4.7
4	3	2	0	3	2	2	1	5808.810	5808.816	-6.2
4	3	2	1	3	2	2	0	5808.865	5808.864	1.1
12	3	10	0	12	2	11	0	5823.359	5823.359	0.4
12	3	10	1	12	2	11	1	5823.359	5823.359	0.4
4	3	1	1	3	2	2	1	5837.033	5837.032	1.9
4	3	1	0	3	2	2	0	5837.033	5837.032	1.9
9	0	9	1	8	1	8	1	6001.152	6001.141	11.2
9	0	9	0	8	1	8	0	6001.152	6001.141	11.2
9	1	9	1	8	0	8	1	6007.249	6007.241	7.3
9	1	9	0	8	0	8	0	6007.249	6007.241	7.3
11	1	10	0	11	0	11	0	6033.980	6033.981	-1.5
11	1	10	1	11	0	11	1	6033.980	6033.981	-1.5
11	2	10	0	11	1	11	0	6045.535	6045.521	14.1
11	2	10	1	11	1	11	1	6045.535	6045.521	14.1
8	2	7	1	7	1	6	1	6153.191	6153.192	-1.6

J'	K_a	K_c	v'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
8	2	7	0	7	1	6	0	6153.191	6153.192	-1.6
5	2	4	0	4	1	4	1	6191.309	6191.296	13.1
5	2	4	1	4	1	4	0	6191.363	6191.348	14.8
5	3	3	1	4	2	2	1	6287.986	6287.992	-5.3
5	3	3	0	4	2	2	0	6287.986	6287.992	-5.3
13	7	6	0	13	6	7	0	6297.886	6297.878	7.8
13	7	6	1	13	6	7	1	6297.886	6297.878	7.8
10	3	7	0	9	4	6	0	6302.926	6302.935	-9.0
10	3	7	1	9	4	6	1	6302.926	6302.935	-9.0
15	7	9	0	15	6	10	0	6364.921	6364.920	1.3
15	7	9	1	15	6	10	1	6364.921	6364.920	1.3
13	2	11	0	13	1	12	0	6368.451	6368.464	-13.0
13	2	11	1	13	1	12	1	6368.451	6368.464	-13.0
14	7	8	0	14	6	9	0	6393.392	6393.391	0.5
14	7	8	1	14	6	9	1	6393.392	6393.391	0.5
5	3	2	0	4	2	2	1	6394.812	6394.818	-5.8
5	3	2	1	4	2	2	0	6394.863	6394.863	0.0
13	3	11	0	13	2	12	0	6413.031	6413.031	0.0
13	3	11	1	13	2	12	1	6413.031	6413.031	0.0
9	2	7	1	8	3	6	1	6423.270	6423.266	4.5
9	2	7	0	8	3	6	0	6423.270	6423.266	4.5
12	7	5	0	12	6	6	0	6448.392	6448.413	-20.9
12	7	5	1	12	6	6	1	6448.392	6448.413	-20.9
9	1	8	0	8	2	7	0	6519.987	6519.987	-0.8
9	1	8	1	8	2	7	1	6519.987	6519.987	-0.8
11	7	4	0	11	6	5	0	6547.141	6547.130	11.2

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
11	7	4	1	11	6	5	1	6547.141	6547.130	11.2
6	2	4	0	5	1	4	1	6559.041	6559.049	-8.0
6	2	4	1	5	1	4	0	6559.086	6559.099	-13.2
11	7	5	0	11	6	6	0	6569.214	6569.220	-6.2
11	7	5	1	11	6	6	1	6569.214	6569.220	-6.2
6	3	3	1	6	0	6	1	6593.904	6593.890	14.1
6	3	3	0	6	0	6	0	6593.904	6593.890	14.1
10	7	3	0	10	6	4	0	6613.120	6613.138	-17.7
10	7	3	1	10	6	4	1	6613.120	6613.138	-17.7
10	7	4	0	10	6	5	0	6620.045	6620.038	6.9
10	7	4	1	10	6	5	1	6620.045	6620.038	6.9
12	1	11	0	12	0	12	0	6635.698	6635.696	1.6
12	1	11	1	12	0	12	1	6635.698	6635.696	1.6
10	0	10	0	9	1	9	0	6636.808	6636.802	5.8
10	0	10	1	9	1	9	1	6636.808	6636.802	5.8
10	1	10	0	9	0	9	0	6639.251	6639.246	5.2
10	1	10	1	9	0	9	1	6639.251	6639.246	5.2
12	2	11	0	12	1	12	0	6640.668	6640.671	-2.9
12	2	11	1	12	1	12	1	6640.668	6640.671	-2.9
9	7	2	0	9	6	3	0	6658.297	6658.295	1.9
9	7	2	1	9	6	3	1	6658.297	6658.295	1.9
9	7	3	1	9	6	4	1	6660.104	6660.101	3.7
9	7	3	0	9	6	4	0	6660.104	6660.101	3.7
5	3	3	0	4	2	3	1	6684.873	6684.870	3.2
5	3	3	1	4	2	3	0	6684.917	6684.917	0.6
8	7	1	0	8	6	2	0	6689.490	6689.490	-0.1

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
8	7	1	1	8	6	2	1	6689.490	6689.490	-0.1
8	7	2	0	8	6	3	0	6689.861	6689.863	-2.6
8	7	2	1	8	6	3	1	6689.861	6689.863	-2.6
9	2	8	0	8	1	7	0	6698.217	6698.217	-0.2
9	2	8	1	8	1	7	1	6698.217	6698.217	-0.2
7	7	0	0	7	6	1	0	6710.841	6710.846	-5.5
7	7	0	1	7	6	1	1	6710.841	6710.846	-5.5
7	7	1	0	7	6	2	0	6710.841	6710.846	-5.5
7	7	1	1	7	6	2	1	6710.841	6710.846	-5.5
4	4	1	1	3	3	0	1	6787.663	6787.660	2.8
4	4	1	0	3	3	0	0	6787.663	6787.660	2.8
4	4	0	0	3	3	0	1	6788.100	6788.096	4.1
4	4	0	1	3	3	0	0	6788.148	6788.140	7.8
5	3	2	1	4	2	3	1	6791.743	6791.742	0.6
5	3	2	0	4	2	3	0	6791.743	6791.742	0.6
4	4	0	1	3	3	1	1	6792.250	6792.253	-3.1
4	4	0	0	3	3	1	0	6792.250	6792.253	-3.1
6	3	4	0	5	2	3	0	6811.262	6811.266	-4.5
6	3	4	1	5	2	3	1	6811.262	6811.266	-4.5
6	1	5	0	5	0	5	1	6952.982	6952.969	12.8
6	1	5	1	5	0	5	0	6953.033	6953.021	12.0
5	2	3	1	4	1	4	1	6995.388	6995.388	-0.2
5	2	3	0	4	1	4	0	6995.388	6995.388	-0.2
14	3	12	0	14	2	13	0	7009.918	7009.944	-26.4
14	3	12	1	14	2	13	1	7009.918	7009.944	-26.4
6	3	3	0	5	2	3	1	7102.366	7102.374	-7.9

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	3	3	1	5	2	3	0	7102.413	7102.416	-3.4
6	4	2	1	6	1	5	1	7119.290	7119.284	5.8
6	4	2	0	6	1	5	0	7119.290	7119.284	5.8
10	1	9	0	9	2	8	0	7197.768	7197.754	13.3
10	1	9	1	9	2	8	1	7197.768	7197.754	13.3
13	1	12	0	13	0	13	0	7234.538	7234.548	-10.6
13	1	12	1	13	0	13	1	7234.538	7234.548	-10.6
13	2	12	0	13	1	13	0	7236.636	7236.643	-7.1
13	2	12	1	13	1	13	1	7236.636	7236.643	-7.1
7	3	5	0	6	2	4	0	7246.056	7246.059	-2.5
7	3	5	1	6	2	4	1	7246.056	7246.059	-2.5
11	0	11	0	10	1	10	0	7271.450	7271.443	7.0
11	0	11	1	10	1	10	1	7271.450	7271.443	7.0
11	1	11	0	10	0	10	0	7272.407	7272.404	3.6
11	1	11	1	10	0	10	1	7272.407	7272.404	3.6
10	2	9	0	9	1	8	0	7282.487	7282.485	1.8
10	2	9	1	9	1	8	1	7282.487	7282.485	1.8
6	2	5	0	5	1	5	1	7307.078	7307.063	15.3
6	2	5	1	5	1	5	0	7307.126	7307.114	12.3
7	4	3	1	7	1	6	1	7351.041	7351.039	1.6
7	4	3	0	7	1	6	0	7351.041	7351.039	1.6
10	2	8	1	9	3	7	1	7377.551	7377.555	-4.1
10	2	8	0	9	3	7	0	7377.551	7377.555	-4.1
11	3	8	1	10	4	7	1	7555.645	7555.656	-11.1
11	3	8	0	10	4	7	0	7555.645	7555.656	-11.1
13	8	6	1	13	7	7	1	7561.011	7561.001	9.7

J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
13	8	6	0	13	7	7	0	7561.011	7561.001	9.7
5	4	2	1	4	3	1	1	7562.343	7562.339	3.8
5	4	2	0	4	3	1	0	7562.343	7562.339	3.8
5	4	1	0	4	3	1	1	7566.363	7566.366	-3.7
5	4	1	1	4	3	1	0	7566.402	7566.409	-7.2
5	4	2	0	4	3	2	1	7590.508	7590.509	-1.1
5	4	2	1	4	3	2	0	7590.543	7590.552	-8.5
5	4	1	1	4	3	2	1	7594.579	7594.579	0.5
5	4	1	0	4	3	2	0	7594.579	7594.579	0.5
6	3	4	0	5	2	4	1	7615.312	7615.308	4.1
6	3	4	1	5	2	4	0	7615.355	7615.356	-1.1
8	3	6	0	7	2	5	0	7619.256	7619.252	3.8
8	3	6	1	7	2	5	1	7619.256	7619.252	3.8
11	8	3	0	11	7	4	0	7663.874	7663.867	7.1
11	8	3	1	11	7	4	1	7663.874	7663.867	7.1
11	8	4	1	11	7	5	1	7664.939	7664.933	6.9
11	8	4	0	11	7	5	0	7664.939	7664.933	6.9
7	2	5	0	6	1	5	1	7697.040	7697.043	-2.9
7	2	5	1	6	1	5	0	7697.040	7697.043	-2.9
11	1	10	0	10	2	9	0	7852.585	7852.601	-15.4
11	1	10	1	10	2	9	1	7852.585	7852.601	-15.4
7	3	4	0	6	2	4	1	7873.622	7873.626	-4.1
7	3	4	1	6	2	4	0	7873.650	7873.664	-14.0
11	2	10	0	10	1	9	0	7891.079	7891.086	-6.6
11	2	10	1	10	1	9	1	7891.079	7891.086	-6.6
12	0	12	0	11	1	11	0	7905.684	7905.676	7.9
J,	K_a	K_c	\mathbf{v}'	J"	K_a "	K_c "	v"	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
----	-------	-------	---------------	----	---------	---------	----	----------------------	-----------------------	-----------------------------
12	0	12	1	11	1	11	1	7905.684	7905.676	7.9
12	1	12	0	11	0	11	0	7906.053	7906.048	5.4
12	1	12	1	11	0	11	1	7906.053	7906.048	5.4
6	3	3	0	5	2	4	0	7906.463	7906.461	1.7
6	3	3	1	5	2	4	1	7906.463	7906.461	1.7
9	3	7	0	8	2	6	0	7968.749	7968.755	-5.8
9	3	7	1	8	2	6	1	7968.749	7968.755	-5.8

Table S39: Assigned rotational transitions for $^{13}\mathrm{C}_1$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	2	2	3	1	3	2028.491	2028.493	-1.2
3	1	3	2	0	2	2436.577	2436.578	-0.4
4	0	4	3	1	3	2664.582	2664.581	1.1
4	1	4	3	0	3	2986.584	2986.582	2.1
5	1	4	4	2	3	3191.326	3191.330	-4.6
6	2	5	6	1	6	3216.189	3216.185	3.6
2	2	0	1	1	1	3234.957	3234.962	-5.6
5	0	5	4	1	4	3381.863	3381.869	-6.4
5	1	5	4	0	4	3549.931	3549.932	-1.1
3	2	2	2	1	1	3690.348	3690.351	-3.1
8	3	5	7	4	4	3728.919	3728.904	15.5
6	0	6	5	1	5	4060.014	4060.015	-1.2
6	1	6	5	0	5	4139.680	4139.684	-4.0

J,	К _а '	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	1	5	5	2	4	4140.399	4140.406	-6.6
4	2	3	3	1	2	4247.641	4247.647	-6.2
3	2	1	2	1	2	4278.140	4278.164	-24.6
7	0	7	6	1	6	4715.053	4715.047	6.1
5	2	4	4	1	3	4740.678	4740.680	-2.1
7	1	7	6	0	6	4750.420	4750.420	0.1
3	3	0	3	0	3	4873.650	4873.638	12.1
3	3	1	2	2	0	4944.134	4944.131	2.6
3	3	0	2	2	1	4978.945	4978.941	3.6
7	1	6	6	2	5	5009.548	5009.547	0.7
6	2	5	5	1	4	5196.248	5196.252	-4.1
8	0	8	7	1	7	5358.201	5358.203	-2.1
8	1	8	7	0	7	5373.225	5373.220	5.0
7	2	6	6	1	5	5654.046	5654.048	-2.1
8	1	7	7	2	6	5794.232	5794.239	-7.1
4	3	1	3	2	2	5834.716	5834.715	1.1
9	0	9	8	1	8	5995.778	5995.779	-0.6
9	1	9	8	0	8	6001.959	6001.951	7.9
8	2	7	7	1	6	6149.211	6149.220	-9.5
5	3	3	4	2	2	6286.243	6286.245	-1.9
9	2	7	8	3	6	6411.950	6411.957	-6.6
9	1	8	8	2	7	6513.355	6513.351	3.8
10	0	10	9	1	9	6630.895	6630.895	0.0
10	1	10	9	0	9	6633.378	6633.371	6.7
9	2	8	8	1	7	6693.223	6693.226	-2.8
4	4	1	3	3	0	6786.500	6786.497	3.2

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
4	4	0	3	3	1	6791.057	6791.054	2.6
7	3	5	6	2	4	7244.200	7244.197	3.1
11	0	11	10	1	10	7264.986	7264.980	6.1
10	2	9	9	1	8	7276.570	7276.572	-2.4
5	4	2	4	3	1	7560.388	7560.382	6.2
5	4	1	4	3	2	7592.376	7592.377	-0.7
6	3	3	5	2	4	7899.854	7899.858	-3.8
9	3	7	8	2	6	7966.266	7966.262	4.0

Table S40: Assigned rotational transitions for $^{13}\mathrm{C}_2$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta u/\mathrm{kHz}$
4	0	4	3	1	3	2655.037	2655.042	-4.2
5	3	3	5	2	4	2841.476	2841.469	7.8
4	1	4	3	0	3	2978.499	2978.507	-8.6
5	0	5	4	1	4	3370.584	3370.592	-8.3
5	1	5	4	0	4	3539.846	3539.851	-5.1
6	0	6	5	1	5	4047.026	4047.028	-1.5
6	1	6	5	0	5	4127.467	4127.475	-7.9
4	2	3	3	1	2	4238.121	4238.135	-13.7
7	0	7	6	1	6	4700.289	4700.288	1.0
5	2	4	4	1	3	4729.830	4729.836	-5.9
7	1	7	6	0	6	4736.092	4736.100	-8.2
3	3	1	2	2	0	4934.522	4934.528	-6.4

_J'	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
3	3	0	2	2	1	4968.991	4968.995	-3.7
7	1	6	6	2	5	4990.434	4990.435	-1.2
6	2	5	5	1	4	5183.978	5183.985	-6.6
8	0	8	7	1	7	5341.604	5341.603	0.8
8	1	8	7	0	7	5356.829	5356.846	-16.8
7	2	6	6	1	5	5639.911	5639.913	-1.7
4	3	2	3	2	1	5649.369	5649.365	3.2
4	3	2	3	2	1	5649.369	5649.365	3.3
8	1	7	7	2	6	5773.988	5773.988	-0.1
4	3	1	3	2	2	5821.321	5821.318	3.1
9	0	9	8	1	8	5977.294	5977.290	4.0
9	1	9	8	0	8	5983.563	5983.571	-8.7
8	2	7	7	1	6	6132.729	6132.728	1.2
5	3	3	4	2	2	6273.047	6273.055	-8.4
9	1	8	8	2	7	6491.891	6491.889	1.4
10	0	10	9	1	9	6610.487	6610.488	-1.5
10	1	10	9	0	9	6613.011	6613.015	-3.6
9	2	8	8	1	7	6674.187	6674.189	-2.4
5	3	2	4	2	3	6769.800	6769.811	-11.5
4	4	1	3	3	0	6773.397	6773.398	-1.3
4	4	0	3	3	1	6777.896	6777.890	6.4
6	3	4	5	2	3	6795.266	6795.269	-3.8
10	1	9	9	2	8	7168.027	7168.027	0.7
7	3	5	6	2	4	7229.290	7229.285	4.8
11	0	11	10	1	10	7242.665	7242.641	24.3
10	2	9	9	1	8	7255.074	7255.081	-7.5

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
5	4	2	4	3	1	7544.737	7544.722	15.1
5	4	1	4	3	2	7576.267	7576.265	1.5
11	1	10	10	2	9	7820.907	7820.895	12.2
12	1	12	11	0	11	7874.780	7874.760	19.7
6	3	3	5	2	4	7876.075	7876.075	-0.2

Table S41: Assigned rotational transitions for $^{13}\mathrm{C}_3$ isotopologue of the xanthene-H_2O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	0	4	3	1	3	2638.838	2638.852	-13.5
4	1	4	3	0	3	2971.628	2971.621	6.7
2	2	0	1	1	1	3227.776	3227.778	-1.6
5	0	5	4	1	4	3353.579	3353.593	-14.2
5	1	5	4	0	4	3529.611	3529.611	0.0
8	3	5	7	4	4	3610.748	3610.733	14.4
6	0	6	5	1	5	4028.988	4028.994	-5.3
6	1	6	5	0	5	4113.597	4113.595	2.0
4	2	3	3	1	2	4236.723	4236.727	-4.1
3	2	1	2	1	2	4257.247	4257.247	-0.9
7	0	7	6	1	6	4680.742	4680.747	-5.0
5	2	4	4	1	3	4727.305	4727.302	3.1
3	3	1	2	2	0	4939.167	4939.164	2.7
3	3	0	2	2	1	4972.508	4972.511	-3.4
6	2	5	5	1	4	5179.636	5179.622	14.9

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
8	0	8	7	1	7	5320.154	5320.154	0.2
8	1	8	7	0	7	5336.541	5336.543	-1.3
7	2	6	6	1	5	5631.889	5631.877	12.4
4	3	2	3	2	1	5651.565	5651.563	1.8
4	3	1	3	2	2	5818.053	5818.061	-8.3
9	0	9	8	1	8	5953.670	5953.668	1.6
9	1	9	8	0	8	5960.504	5960.497	7.0
5	3	3	4	2	2	6274.720	6274.722	-1.6
9	1	8	8	2	7	6460.144	6460.162	-17.7
10	0	10	9	1	9	6584.549	6584.547	2.2
10	1	10	9	0	9	6587.324	6587.323	0.4
4	4	1	3	3	0	6780.133	6780.124	8.5
4	4	0	3	3	1	6784.384	6784.389	-4.4
6	3	4	5	2	3	6797.593	6797.587	5.7
11	0	11	10	1	10	7214.304	7214.303	1.6
11	1	11	10	0	10	7215.401	7215.410	-9.6
10	2	9	9	1	8	7230.604	7230.604	0.0
7	3	5	6	2	4	7232.471	7232.457	13.9
5	4	2	4	3	1	7547.646	7547.650	-3.5
5	4	1	4	3	2	7577.605	7577.610	-4.4

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	1	3	2	0	2	2423.091	2423.100	-8.3
4	0	4	3	1	3	2637.182	2637.197	-14.9
4	1	4	3	0	3	2968.332	2968.344	-11.6
5	1	4	4	2	3	3139.470	3139.482	-12.2
5	0	5	4	1	4	3351.012	3351.027	-14.5
5	1	5	4	0	4	3525.924	3525.936	-12.5
3	2	2	2	1	1	3677.718	3677.726	-7.5
6	0	6	5	1	5	4025.588	4025.588	-0.5
6	1	5	5	2	4	4084.505	4084.493	12.4
6	1	6	5	0	5	4109.524	4109.532	-8.3
7	2	5	6	3	4	4130.253	4130.246	6.6
4	2	3	3	1	2	4231.288	4231.300	-11.2
7	0	7	6	1	6	4676.582	4676.590	-7.9
7	1	7	6	0	6	4714.313	4714.323	-10.1
7	1	7	6	0	6	4714.313	4714.323	-10.1
3	3	1	2	2	0	4932.366	4932.359	7.7
7	1	6	6	2	5	4952.505	4952.495	9.8
3	3	0	2	2	1	4965.822	4965.817	4.9
6	2	5	5	1	4	5173.083	5173.081	1.9
8	0	8	7	1	7	5315.308	5315.312	-4.7
8	1	8	7	0	7	5331.521	5331.527	-6.5
7	2	6	6	1	5	5625.107	5625.086	21.5
4	3	2	3	2	1	5644.079	5644.073	6.0
4	3	1	3	2	2	5811.108	5811.110	-1.9

Table S42: Assigned rotational transitions for $^{13}\mathrm{C}_4$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
9	0	9	8	1	8	5948.185	5948.184	1.2
9	1	9	8	0	8	5954.931	5954.931	0.7
5	3	3	4	2	2	6266.382	6266.389	-6.6
10	0	10	9	1	9	6578.454	6578.441	12.6
10	1	10	9	0	9	6581.192	6581.181	10.8
5	3	2	4	2	3	6749.589	6749.603	-14.8
4	4	1	3	3	0	6770.765	6770.760	5.5
4	4	0	3	3	1	6775.055	6775.050	5.3
6	3	4	5	2	3	6788.368	6788.359	8.8
11	0	11	10	1	10	7207.598	7207.587	11.1
5	4	2	4	3	1	7537.722	7537.724	-1.5
5	4	1	4	3	2	7567.855	7567.860	-5.4

Table S43: Assigned rotational transitions for ${}^{13}C_5$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	1	3	2	0	2	2424.241	2424.251	-9.4
4	0	4	3	1	3	2652.502	2652.507	-5.5
4	1	4	3	0	3	2971.628	2971.611	16.9
5	0	5	4	1	4	3366.076	3366.072	3.1
5	1	5	4	0	4	3532.366	3532.371	-5.5
6	0	6	5	1	5	4040.727	4040.727	0.4
6	1	6	5	0	5	4119.441	4119.436	4.8
4	2	3	3	1	2	4225.568	4225.557	10.5

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta u/\mathrm{kHz}$
3	2	1	2	1	2	4257.247	4257.265	-18.7
7	0	7	6	1	6	4692.443	4692.450	-7.0
5	2	4	4	1	3	4716.050	4716.044	6.2
7	1	7	6	0	6	4727.335	4727.343	-7.5
3	3	1	2	2	0	4917.906	4917.912	-5.7
7	1	6	6	2	5	4987.661	4987.653	7.9
6	2	5	5	1	4	5169.359	5169.363	-3.8
8	0	8	7	1	7	5332.411	5332.412	-1.3
7	2	6	6	1	5	5625.145	5625.155	-10.5
4	3	2	3	2	1	5631.365	5631.368	-2.2
8	1	7	7	2	6	5767.845	5767.841	3.7
4	3	1	3	2	2	5804.895	5804.894	0.3
9	0	9	8	1	8	5966.864	5966.858	5.7
9	1	9	8	0	8	5972.924	5972.928	-4.1
5	3	3	4	2	2	6253.226	6253.227	-0.6
9	1	8	8	2	7	6482.904	6482.908	-4.1
10	1	10	9	0	9	6601.307	6601.308	-1.0
9	2	8	8	1	7	6660.234	6660.230	4.3
4	4	1	3	3	0	6750.486	6750.484	2.4
5	3	2	4	2	3	6754.233	6754.230	2.9
4	4	0	3	3	1	6755.054	6755.050	3.5
6	3	4	5	2	3	6773.473	6773.471	2.0
10	1	9	9	2	8	7156.821	7156.818	2.9
5	4	1	4	3	2	7552.837	7552.835	2.3

J,	K_a	K_c	J"	K_a "	K."	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
4	1	3	3	2	2	2199.700	2199.699	1.0
4	0	4	3	1	3	2663.831	2663.833	-1.8
4	3	2	4	2	3	2698.462	2698.446	16.7
6	1	5	6	0	6	2831.026	2831.028	-2.4
5	3	3	5	2	4	2836.908	2836.907	0.9
4	1	4	3	0	3	2982.843	2982.845	-2.6
2	2	1	1	1	0	3050.437	3050.449	-11.8
5	1	4	4	2	3	3194.904	3194.906	-2.2
2	2	0	1	1	1	3228.910	3228.917	-7.0
5	0	5	4	1	4	3380.002	3380.003	-0.9
5	1	5	4	0	4	3546.034	3546.038	-3.9
3	2	2	2	1	1	3683.408	3683.405	2.2
6	0	6	5	1	5	4057.169	4057.170	-1.2
6	1	6	5	0	5	4135.642	4135.649	-7.6
6	1	5	5	2	4	4142.349	4142.351	-2.0
4	2	3	3	1	2	4240.068	4240.077	-8.3
7	0	7	6	1	6	4711.389	4711.392	-3.0
7	0	7	6	1	6	4711.389	4711.392	-2.8
5	2	4	4	1	3	4732.504	4732.508	-4.0
7	1	7	6	0	6	4746.141	4746.136	5.1
3	3	1	2	2	0	4933.615	4933.620	-5.2
3	3	0	2	2	1	4968.660	4968.660	-0.2
7	1	6	6	2	5	5009.401	5009.400	1.2
6	2	5	5	1	4	5187.742	5187.745	-2.2

Table S44: Assigned rotational transitions for $^{13}\mathrm{C}_6$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
8	0	8	7	1	7	5353.880	5353.863	17.6
8	1	8	7	0	7	5368.575	5368.570	5.0
7	2	6	6	1	5	5645.679	5645.688	-8.9
4	3	2	3	2	1	5649.875	5649.873	1.8
8	1	7	7	2	6	5792.024	5792.024	-0.5
4	3	1	3	2	2	5824.619	5824.614	5.8
9	0	9	8	1	8	5990.835	5990.830	4.5
9	1	9	8	0	8	5996.861	5996.858	2.8
8	2	7	7	1	6	6141.381	6141.384	-3.0
5	3	3	4	2	2	6274.009	6274.014	-4.6
10	0	10	9	1	9	6625.387	6625.380	6.9
9	2	8	8	1	7	6685.896	6685.905	-8.2
4	4	1	3	3	0	6771.969	6771.973	-3.4
4	4	0	3	3	1	6776.589	6776.582	6.4
5	3	2	4	2	3	6778.430	6778.424	6.4
6	3	4	5	2	3	6796.080	6796.082	-1.2
7	3	5	6	2	4	7229.851	7229.845	5.4
5	4	1	4	3	2	7577.759	7577.762	-2.2

Table S45: Assigned rotational transitions for $^{13}\mathrm{C}_7$ isotopologue of the xanthene-H₂O complex, 1w-I.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
3	1	3	2	0	8	2428.141	2428.141	0.0
4	1	4	3	0	4	2977.883	2977.893	-10.6

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
5	0	5	4	1	6	3380.890	3380.884	5.8
5	1	5	4	0	4	3541.726	3541.733	-7.5
6	0	6	5	1	5	4056.614	4056.623	-9.2
6	1	6	5	0	5	4132.060	4132.055	4.7
7	0	7	6	1	5	4709.849	4709.843	6.1
7	1	7	6	0	6	4742.974	4742.978	-4.7
7	1	6	6	2	2	5017.412	5017.418	-6.3
6	2	5	5	1	5	5173.328	5173.331	-3.6
4	3	2	3	2	4	5627.761	5627.764	-3.6
4	3	1	3	2	1	5805.718	5805.711	6.5
9	0	9	8	1	3	5988.120	5988.122	-2.0
9	1	9	8	0	8	5993.780	5993.782	-2.3
5	3	3	4	2	2	6250.291	6250.293	-2.1
4	4	1	3	3	2	6742.225	6742.223	1.4
4	4	0	3	3	0	6746.979	6746.982	-3.3
11	1	11	10	0	1	7256.406	7256.392	14.4
5	4	1	4	3	10	7549.113	7549.110	3.8

3.3 Frequency list of the xanthene- $(H_2O)_2$ complex

Table S46: Assigned rotational transitions for the xanthene- $(H_2O)_2$ complex, 2w-III.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	1	2	2	1	1	2157.425	2157.411	14.2
7	2	5	7	2	6	2240.000	2239.997	3.0

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta u/\mathrm{kHz}$
4	1	4	3	1	3	2256.573	2256.574	-0.2
4	0	4	3	0	3	2287.405	2287.408	-2.5
4	1	4	3	0	3	2303.216	2303.189	27.0
4	2	3	3	2	2	2592.335	2592.330	5.8
3	2	2	2	1	1	2597.007	2597.007	-0.3
4	3	2	3	3	1	2720.666	2720.662	3.7
5	0	5	4	1	4	2771.470	2771.473	-2.6
4	1	3	3	1	2	2776.243	2776.234	-1.8
5	1	5	4	1	4	2776.243	2776.253	-1.8
5	0	5	4	0	4	2787.254	2787.254	0.4
4	2	2	3	2	1	2939.937	2939.929	8.0
9	5	5	9	3	6	2971.628	2971.626	1.8
10	4	6	9	6	3	3137.992	3137.987	5.0
5	2	4	4	2	3	3173.024	3173.019	4.9
6	0	6	5	1	5	3288.283	3288.289	-5.2
6	1	6	5	1	5	3289.639	3289.642	-2.8
6	0	6	5	0	5	3293.062	3293.069	-7.2
6	1	6	5	0	5	3294.428	3294.423	4.7
5	1	4	4	1	3	3309.877	3309.877	-0.3
3	3	0	2	2	0	3371.696	3371.697	-1.5
5	3	3	4	3	2	3388.555	3388.548	7.1
3	3	1	2	2	1	3413.795	3413.799	-4.0
5	4	2	4	4	1	3422.303	3422.292	10.5
3	3	0	2	2	1	3428.512	3428.511	1.7
5	3	2	4	3	1	3601.904	3601.887	16.9
5	2	3	4	2	2	3660.216	3660.213	3.0

J'	K_a	K_c	J"	K_a "	K."	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	1	5	5	2	4	3677.718	3677.712	6.6
6	2	5	5	2	4	3723.692	3723.681	11.4
6	1	5	5	1	4	3796.544	3796.546	-1.8
7	0	7	6	1	6	3800.286	3800.283	2.8
7	1	7	6	1	6	3800.641	3800.650	-8.6
7	0	7	6	0	6	3801.633	3801.637	-4.0
4	3	2	3	2	1	3910.841	3910.856	-15.2
4	2	3	3	1	3	3914.307	3914.287	19.5
4	3	1	3	2	1	4003.967	4003.955	11.2
6	3	4	5	3	3	4026.397	4026.395	2.4
6	4	3	5	4	2	4123.840	4123.840	-0.4
4	3	2	3	2	2	4155.869	4155.862	7.1
6	4	2	5	4	1	4213.775	4213.764	11.6
4	3	1	3	2	2	4248.976	4248.961	14.8
7	2	6	6	2	5	4253.046	4253.056	-10.5
7	1	6	6	1	5	4283.275	4283.278	-2.9
6	2	4	5	2	3	4297.779	4297.773	5.7
8	1	8	7	1	7	4310.889	4310.894	-4.8
8	0	8	7	0	7	4311.158	4311.164	-5.9
5	2	3	4	1	3	4508.516	4508.511	5.6
4	4	1	3	3	1	4619.401	4619.401	-0.4
4	4	0	3	3	1	4622.528	4622.527	1.0
7	3	5	6	3	4	4627.512	4627.507	4.4
5	3	2	4	2	2	4665.907	4665.913	-6.1
4	3	1	3	1	2	4688.545	4688.558	-12.7
8	2	7	7	2	6	4770.641	4770.639	1.1

J,	K_a	K_c	J"	K_a "	K_c "	ν_{obs}/MHz	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
8	1	7	7	1	6	4781.404	4781.404	0.3
8	2	7	7	1	6	4786.389	4786.387	1.9
7	4	4	6	4	3	4810.361	4810.357	4.3
9	0	9	8	1	8	4820.921	4820.900	2.0
9	1	9	8	1	8	4820.921	4820.925	2.0
9	0	9	8	0	8	4820.988	4820.996	-14.0
9	1	9	8	0	8	4820.988	4821.021	-14.0
7	2	5	6	2	4	4839.146	4839.161	-14.7
7	5	2	6	5	1	4850.056	4850.046	9.2
7	4	3	6	4	2	5038.100	5038.106	-5.9
7	3	4	6	3	3	5163.205	5163.224	-18.2
8	3	6	7	3	5	5193.319	5193.322	-3.2
9	2	8	8	2	7	5282.990	5282.995	-4.4
9	1	8	8	1	7	5286.485	5286.486	-0.8
8	2	6	7	2	5	5317.707	5317.713	-5.5
10	0	10	9	1	9	5330.920	5330.900	5.2
10	1	10	9	1	9	5330.920	5330.906	5.2
10	0	10	9	0	9	5330.920	5330.924	5.2
10	1	10	9	0	9	5330.920	5330.930	5.2
8	4	5	7	4	4	5467.316	5467.329	-13.2
6	2	4	5	1	4	5496.412	5496.407	5.0
8	6	3	7	6	2	5503.835	5503.830	4.7
8	6	2	7	6	1	5511.246	5511.250	-4.3
8	5	4	7	5	3	5537.140	5537.136	3.4
8	5	3	7	5	2	5632.570	5632.588	-18.2
9	2	7	8	2	6	5789.443	5789.442	1.0

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
10	2	9	9	2	8	5793.449	5793.446	3.2
10	1	9	9	1	8	5794.522	5794.509	12.7
8	3	5	7	3	4	5823.184	5823.210	-25.5
5	5	1	4	4	0	5833.432	5833.432	0.5
5	5	0	4	4	0	5834.034	5834.030	4.6
5	5	1	4	4	1	5836.568	5836.558	10.6
5	5	0	4	4	1	5837.163	5837.156	7.1
11	0	11	10	1	10	5840.877	5840.877	0.0
11	1	11	10	1	10	5840.877	5840.879	0.0
11	0	11	10	0	10	5840.877	5840.883	0.0
11	1	11	10	0	10	5840.877	5840.885	0.0
6	4	3	5	3	3	6056.323	6056.323	0.3
9	4	6	8	4	5	6085.936	6085.952	-16.2
10	3	8	9	3	7	6254.024	6254.017	7.1
10	2	8	9	2	7	6276.588	6276.587	1.3
11	2	10	10	2	9	6303.341	6303.332	9.0
11	1	10	10	1	9	6303.641	6303.642	-0.7
12	0	12	11	1	11	6350.849	6350.852	-3.2
12	1	12	11	1	11	6350.849	6350.852	-3.2
9	3	6	8	3	5	6376.332	6376.329	3.1
11	2	9	10	2	8	6775.813	6775.801	11.2
10	3	7	9	3	6	6850.215	6850.231	-15.7
13	0	13	12	1	12	6860.824	6860.826	-2.4
13	1	13	12	1	12	6860.824	6860.826	-2.4
7	4	3	6	3	4	7184.274	7184.299	-24.9
12	3	10	11	3	9	7278.294	7278.286	8.4

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{\rm MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
12	2	10	11	2	9	7280.942	7280.930	11.3

3.4 Frequency list of the xanthene- $(H_2O)_3$ complex

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
3	1	2	2	0	2	2489.939	2489.946	-6.5
5	1	4	4	2	2	2609.182	2609.163	19.9
5	0	5	4	1	3	2661.717	2661.703	13.4
3	2	1	2	1	1	2968.759	2968.768	-8.4
3	2	2	2	1	2	3083.555	3083.561	-6.5
6	0	6	5	1	4	3113.324	3113.316	8.6
4	1	3	3	0	3	3263.005	3263.019	-13.4
6	1	5	5	2	3	3300.407	3300.410	-2.8
4	2	2	3	1	2	3616.591	3616.601	-10.4
3	3	0	2	2	0	3677.181	3677.175	5.7
3	3	1	2	2	1	3681.666	3681.650	16.7
4	2	3	3	1	3	3824.427	3824.436	-8.6
5	1	4	4	0	4	4071.604	4071.608	-4.1
5	2	3	4	1	3	4279.999	4280.010	-11.0
10	1	10	9	2	8	4311.563	4311.567	-3.7
4	3	1	3	2	1	4341.482	4341.482	0.1
4	3	2	3	2	2	4362.910	4362.911	-1.3
5	2	4	4	1	4	4587.335	4587.331	4.1

Table S47: Assigned rotational transitions for the xanthene- $(H_2O)_3$ complex, 3w-I.

J'	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	1	5	5	0	5	4918.721	4918.717	4.1
6	2	4	5	1	4	4969.550	4969.566	-15.2
5	3	2	4	2	2	4992.555	4992.567	-12.2
4	4	0	3	3	0	5016.381	5016.368	13.3
4	4	1	3	3	1	5016.674	5016.663	10.4
6	2	5	5	1	5	5371.760	5371.763	-2.9
6	3	3	5	2	3	5627.661	5627.673	-12.0
12	3	10	11	4	8	5656.562	5656.570	-8.1
5	4	1	4	3	1	5689.117	5689.104	12.2
5	4	2	4	3	2	5691.130	5691.127	3.2
7	2	5	6	1	5	5692.600	5692.614	-13.7
6	3	4	5	2	4	5754.266	5754.276	-9.9
7	1	6	6	0	6	5800.964	5800.947	16.9
11	1	10	10	2	8	5893.099	5893.087	12.6
7	2	6	6	1	6	6176.665	6176.648	16.6
7	3	4	6	2	4	6250.759	6250.771	-12.0
6	4	2	5	3	2	6358.476	6358.482	-6.1
6	4	3	5	3	3	6366.319	6366.322	-3.0
8	2	6	7	1	6	6454.575	6454.560	14.8
7	3	5	6	2	5	6471.122	6471.115	7.9
7	4	8	6	3	3	7020.941	7020.950	-9.8
6	5	3	5	4	1	7027.312	7027.300	11.2
6	5	1	5	4	2	7027.455	7027.443	12.4
7	4	4	6	3	4	7043.437	7043.447	-9.3
8	3	6	7	2	6	7205.788	7205.797	-9.2
9	3	6	8	2	6	7509.244	7509.239	5.3

J'	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
8	4	4	7	3	4	7671.724	7671.737	-12.9
7	5	6	6	4	2	7700.245	7700.235	10.5
7	5	6	6	4	3	7700.933	7700.933	-0.5
8	4	4	7	3	5	7724.525	7724.542	-17.3
9	3	8	8	2	7	7960.202	7960.190	11.3

3.5 Frequency list of the xanthene- $(H_2O)_4$ complex

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
5	0	5	4	1	3	2544.926	2544.923	2.9
4	2	2	3	1	2	3127.570	3127.547	22.7
6	0	6	5	1	5	3434.717	3434.714	2.9
7	0	7	6	1	6	4039.636	4039.627	9.3
4	4	0	3	3	0	4208.104	4208.105	1.9
4	4	1	3	3	0	4208.104	4208.100	1.9
4	4	1	3	3	1	4208.213	4208.212	-2.1
4	4	0	3	3	1	4208.213	4208.217	-2.1
5	3	3	4	2	3	4308.451	4308.451	0.0
5	3	2	4	2	3	4311.563	4311.569	-6.0
5	4	2	4	3	1	4809.824	4809.803	0.6
5	4	1	4	3	1	4809.824	4809.846	0.6
5	4	2	4	3	2	4810.620	4810.589	8.7
5	4	1	4	3	2	4810.620	4810.631	8.7

Table S48: Assigned rotational transitions for the xanthene- $(H_2O)_4$ complex, 4w-II.

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	ν_{calc}/MHz	$\Delta \nu / \mathrm{kHz}$
6	3	4	5	2	3	4851.023	4851.022	0.7
6	3	3	5	2	3	4860.269	4860.257	11.8
6	3	4	5	2	4	4924.324	4924.336	-11.5
9	0	9	8	1	8	5225.438	5225.436	1.5
5	5	1	4	4	0	5324.449	5324.443	3.2
5	5	1	4	4	1	5324.449	5324.448	3.2
5	5	0	4	4	0	5324.449	5324.444	3.2
5	5	0	4	4	1	5324.449	5324.448	3.2
7	3	5	6	2	4	5409.046	5409.051	-5.4
6	4	3	5	3	2	5410.025	5410.014	10.4
6	4	2	5	3	2	5410.226	5410.225	1.2
6	4	3	5	3	3	5413.137	5413.132	4.8
6	4	2	5	3	3	5413.340	5413.343	-2.3
7	3	4	6	2	4	5431.671	5431.665	6.5
8	1	7	7	0	7	5669.935	5669.932	2.6
10	0	10	9	1	9	5809.483	5809.503	-20.0
10	1	10	9	0	9	5843.194	5843.168	26.1
7	4	4	6	3	3	6006.995	6007.001	-5.8
7	4	4	6	3	4	6016.235	6016.236	-1.3
7	4	3	6	3	4	6016.992	6017.002	-10.3
11	1	11	10	0	10	6410.323	6410.339	-15.7
8	4	5	7	3	5	6620.652	6620.664	-12.2
8	4	4	7	3	5	6622.934	6622.938	-4.0
7	6	2	6	5	1	7042.935	7042.923	11.2
7	6	2	6	5	2	7042.935	7042.925	11.2
8	5	4	7	4	3	7129.441	7129.441	-23.8

J,	K_a	K_c	J"	K_a "	K_c "	$\nu_{obs}/{ m MHz}$	$\nu_{calc}/{ m MHz}$	$\Delta \nu / \mathrm{kHz}$
8	5	3	7	4	3	7129.441	7129.491	-23.8
8	5	4	7	4	4	7130.230	7130.206	-2.5
8	5	3	7	4	4	7130.230	7130.257	-2.5
9	4	5	8	3	6	7233.427	7233.411	15.6

References

- Meng, E. C.; Goddard, T. D.; Pettersen, E. F.; Couch, G. S.; Pearson, Z. J.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Tools for structure building and analysis. *Protein Science* 2023, *32*, e4792.
- (2) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. *Journal of the American Chemical Society* 2010, 132, 6498–6506.
- (3) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry 2012, 33, 580–592.