Sulfobetaine ionic liquid crystals based on strong acids: phase behavior and electrochemistry

Alyna Lange^{1,*}, Nadia Kapernaum², Zaneta Wojnarowska³, Lea Holtzheimer¹, Stefan Mies¹, Vance Williams⁴, Frank Gießelmann², Andreas Taubert^{1,*}

Synthesis and analytical data of the ZIs

All ZIs were synthesized following a previously published protocol.^{1,2} The amine was put into a two-neck round-bottom flask and stirred with a magnetic stir bar at room temperature. An equimolar amount of 1,4-butanesultone was slowly added via a syringe. After complete addition, the mixture was heated to 60 °C. When the formation of a white solid was observed, acetone was added and the reaction mixture was left to reflux for several days until sufficient amounts of precipitate were achieved. Upon cooling to room temperature the solid was filtered, washed with cold acetone (3x) and dried via rotary evaporator.

DmC₁₀**S**: yield: 89.5 %; ESI-MS: 322.240 g/mol (molecular mass + H⁺); ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.87 (m, 3 H) 1.21 - 1.43 (m, 14 H) 1.66 - 1.97 (m, 6 H) 2.92 (t, 2 H) 3.06 (s, 6 H) 3.21 - 3.38 (m, 4 H).

DmC₁₂**S**: yield: 91.5 %; ESI-MS: 350.273 g/mol (molecular mass + H⁺); ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.91 (t, 3 H) 1.23 - 1.56 (m, 18 H) 1.69 - 2.03 (m, 6 H) 2.95 (t, 2 H) 3.13 (s, 6 H) 3.29 - 3.46 (m, 4 H).

DmC₁₄S: yield: 86.4 %; ESI-MS: 378.306 g/mol (molecular mass + H⁺); ¹H NMR (400 MHz, D₂O): δ [ppm]: 1.03 - 1.17 (m, 3 H) 1.31 - 1.77 (m, 22 H) 1.87 - 2.28 (m, 6 H) 3.18 (t, 2 H) 3.37 (s, 6 H) 3.49 - 3.74 (m, 4 H).

DmC₁₆S: yield: 74.7 %; ESI-MS: 406.336 g/mol (molecular mass + H⁺); ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.95 - 1.09 (m, 3 H) 1.23 - 1.77 (m, 25 H) 1.78 - 2.18 (m, 6 H) 3.06 - 3.12 (m, 2 H) 3.27 (s, 6 H) 3.40 - 3.64 (m, 4 H).

NMR-data of the ILCs

DmC₁₀**S MeSO**₃: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.73 - 0.94 (m, 3 H) 1.18 - 1.41 (m, 14 H) 1.60 - 1.93 (m, 6 H) 2.74 (s, 3 H) 2.89 (t, *J*=8.00 Hz, 1 H) 3.03 (s, 1 H) 3.17 - 3.33 (m, 4 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.65 (s, 1 C) 20.92 (s, 1 C) 21.21 (s, 1 C) 21.96 (s, 1 C) 22.30 (s, 1 C) 25.70 (s, 1 C) 28.51 (s, 1 C) 28.86 (s, 1 C) 28.90 (s, 1 C) 29.00 (s, 1 C) 31.51 (s, 1 C) 38.41 (s, 1 C) 50.03 (s, 1 C) 50.71 (br s, 1 C) 63.09 (br s, 1 C) 63.95 (s, 1 C).

DmC₁₂**S MeSO**₃: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.76 - 0.93 (m, 3 H) 1.18 - 1.41 (m, 18 H) 1.61 - 1.98 (m, 6 H) 2.73 (s, 3 H) 2.85 (t, *J*=7.38 Hz, 2 H) 3.04 (s, 6 H) 3.15 - 3.39 (m, 4 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.86 (s, 1 C) 21.00 (s, 1 C) 21.37 (s, 1 C) 22.23 (s, 1 C) 22.62 (s, 1 C) 26.10 (s, 1 C) 29.06 (s, 1 C) 29.44 (s, 1 C) 29.55 (s, 1 C) 29.66 (s, 1 C) 29.76 (s, 1 C) 29.80 (s, 1 C) 31.94 (s, 1 C) 38.42 (s, 1 C) 50.10 (s, 1 C) 50.87 (s, 1 C) 63.00 (s, 1 C) 63.66 (s, 1 C).

DmC₁₄**S MeSO**₃: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.67 – 0.97 (m, 3 H) 1.13 - 1.40 (m, 22 H) 1.58 - 1.94 (m, 6 H) 2.72 (s, 3 H) 2.79 - 2.90 (m, 2 H) 3.04 (s, 6 H) 3.17 - 3.37 (m, 4 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.89 (s, 1 C) 21.04 (s, 1 C) 21.42 (s, 1 C) 22.32 (s, 1 C) 22.67 (s, 1 C) 26.21 (s, 1 C) 29.20 (s, 1 C) 29.56 (s, 1 C) 29.73 (s, 1 C) 29.85 (s, 1 C) 29.90 (s, 1 C) 30.01 (s, 1 C) 32.02 (s, 1 C) 38.43 (s, 1 C) 42.66 (s, 1 C) 50.13 (s, 1 C) 50.90 (s, 1 C) 63.06 (s, 1 C) 63.69 (s, 1 C).

DmC₁₆**S MeSO**₃: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.86 - 0.97 (m, 3 H) 1.24 - 1.53 (m, 26 H) 1.67 - 2.07 (m, 6 H) 2.83 (s, 1 H) 2.95 (t, *J*=7.30 Hz, 2 H) 3.16 (s, 6 H) 3.30 - 3.48 (m, 4 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.95 (s, 1 C) 21.16 (s, 1 C) 21.52 (s, 1 C) 22.45 (s, 1 C) 22.76 (s, 1 C) 26.34 (s, 1 C) 29.34 (s, 1 C) 29.67 (s, 1 C) 29.86 (s, 1 C) 30.02 (s, 1 C) 30.15 (br s, 1 C) 30.18 (s, 1 C) 30.22 (s, 1 C) 32.12 (s, 1 C) 38.55 (s, 1 C) 50.24 (s, 1 C) 50.82 (s, 1 C) 63.36 (s, 1 C) 63.93 (s, 1 C).

DmC₁₀**S HSO**₄: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.73 - 0.90 (m, 3 H) 1.09 - 1.46 (m, 14 H) 1.54 - 2.00 (m, 6 H) 2.86 (t, *J*=7.50 Hz, 2 H) 3.00 (s, 6 H) 3.13 - 3.33 (m, 4 H) 3.65 (s, 1 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.73 (s, 1 C) 20.94 (s, 1 C) 21.24 (s, 1 C) 22.03 (s, 1 C) 22.39 (s, 1 C) 25.81 (s, 1 C) 28.66 (s, 1 C) 29.00 (s, 1 C) 29.08 (s, 1 C) 29.16 (s, 1 C) 31.63 (s, 1 C) 50.04 (s, 1 C) 50.71 (s, 1 C) 63.03 (s, 1 C) 63.86 (s, 1 C).

DmC₁₂**S HSO**₄: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.72 - 0.97 (m, 3 H) 1.13 - 1.44 (m, 18 H) 1.61 - 1.97 (m, 6 H) 2.85 (t, *J*=7.80 Hz, 1 H) 3.04 (s, 6 H) 3.15 - 3.44 (m, 4 H) 3.66 (s, 1 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.86 (s, 1 C) 21.00 (s, 1 C) 21.37 (s, 1 C) 22.23 (s, 1 C) 22.61 (s, 1 C) 26.09 (s, 1 C) 29.06 (s, 1 C) 29.43 (s, 1 C) 29.55 (s, 1 C) 29.65 (s, 1 C) 29.75 (s, 1 C) 29.79 (s, 1 C) 31.93 (s, 1 C) 50.09 (s, 1 C) 50.85 (s, 1 C) 62.99 (s, 1 C) 63.65 (s, 1 C).

DmC₁₄**S HSO**₄: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.76 - 0.88 (m, 3 H) 1.11 - 1.44 (m, 22 H) 1.58 - 1.95 (m, 6 H) 2.83 (t, *J*=7.50 Hz, 2 H) 3.03 (s, 6 H) 3.15 - 3.36 (m, 4 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.86 (s, 1 C) 21.01 (s, 1 C) 21.39 (s, 1 C) 22.28 (s, 1 C) 22.65 (s, 1 C) 26.17 (s, 1 C) 29.17 (s, 1 C) 29.53 (s, 1 C) 29.70 (s, 1 C) 29.82 (s, 1 C) 29.87 (s, 1 C) 29.98 (s, 1 C) 31.99 (s, 1 C) 50.09 (s, 1 C) 50.87 (s, 1 C) 62.99 (s, 1 C) 63.61 (s, 1 C).

DmC₁₆**S HSO**₄: ¹H NMR (400 MHz, D₂O): δ [ppm]: 0.75 - 0.90 (m, 3 H) 1.14 - 1.45 (m, 26 H) 1.60 - 1.95 (m, 6 H) 2.84 (t, *J*=7.25 Hz, 2 H) 3.06 (s, 6 H) 3.16 - 3.38 (m, 4 H) 3.64 (s, 1 H); ¹³C NMR (101 MHz, D₂O): δ [ppm]: 13.86 (s, 1 C) 21.02 (s, 1 C) 21.43 (s, 1 C) 22.31 (s, 1 C) 22.67 (s, 1 C) 26.21 (s, 1 C) 29.23 (s, 1 C) 29.57 (s, 1 C) 29.76 (s, 1 C) 29.92 (s, 1 C) 30.04 (s, 1 C) 30.09 (s, 1 C) 30.12 (s, 1 C) 32.03 (s, 1 C) 50.11 (s, 1 C) 50.85 (s, 1 C) 63.03 (s, 1 C) 63.62 (s, 1 C).

Figure S1: Representative plots of the real part of complex conductivity vs. frequency at different temperatures for **a**) DmC₁₀S HSO₄, and **b**) DmC₁₂S HSO₄. Conductivity values were taken from the frequency-independent plateau regions.

Figure S2: IR spectra of a) mesylate based ILCs, and b) hydrogen sulfate based ILCs.

Figure S3: 2nd heating and cooling DSC runs of **a**) short-chained mesylate based ILCs, and **b**) hydrogen sulfate based ILCs.

Figure S4: POM image of DmC₁₄S MeSO₃ at 90 °C upon cooling.

Figure S5: 2D diffraction patterns, integrated diffractograms and POM images of **a**) DmC₁₄S HSO₄ at 75 °C, and **b**) DmC₁₀S HSO₄ at 25 °C.

Figure S6: 2D diffraction patterns, integrated diffractograms and POM images of **a**) DmC₁₆S MeSO₃ at 95 °C, **b**) DmC₁₆S MeSO₃ at 170 °C, **c**) DmC₁₄S MeSO₃ at 75 °C, and **d**) DmC₁₀S MeSO₃ at 20 °C.

Figure S7: Comparisons of ionic conductivities for a) $DmC_{10}S$ ILCs, b) $DmC_{12}S$ ILCs, c) $DmC_{14}S$ ILCs, and d) $DmC_{16}S$ ILCs. The vertical lines are drawn at phase transition temperatures.

Figure S8: Representative VFT fits for a) $DmC_{12}S HSO_4$, b) $DmC_{12}S MeSO_3$, and c) $DmC_{16}S HSO_4$ with two VFT fits.

References:

1) Zehbe, K.; Lange, A.; Taubert, A. Stereolithography Provides Access to 3D Printed Ionogels with High Ionic Conductivity. *Energy Fuels* **2019**, *33*, 12885–12893.

2) Delahaye, E.; Göbel, R.; Löbbicke, R.; Guillot, R.; Sieber, C.; Taubert, A. Silica ionogels for proton transport. *J. Mater. Chem.* **2012**, *22*, 17140.

3) Taubert, A.; Löbbicke, R.; Kirchner, B.; Leroux, F. First examples of organosilica-based ionogels: synthesis and electrochemical behavior. *Beilstein journal of nanotechnology* **2017**, *8*, 736–751.