Supplementary information:

Ultraviolet photochemistry dynamics of the 2-buten-2-yl radical

Michael Lucas,^{a#} Yuan Qin,[#] Lei Yang, Ge Sun, and Jingsong Zhang*

Department of Chemistry

University of California at Riverside

Riverside, CA 92521

U. S. A.

a. Present address: Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.

* Corresponding author. E-mail: jingsong.zhang@ucr.edu. Fax: 1-951-827-4713. Also at the Air Pollution Research Center, University of California, Riverside, CA 92521, USA.

1. Background removal in the H-atom TOF spectrum of 2-buten-2-yl

Fig. S1 Sample H-atom TOF spectra of 236-nm photodissociation of 2-buten-2-yl from 2-chloro-2-butene, with the 193-nm photolysis laser radiation on and off. The polarization vector of the 236 nm photodissociation radiation was parallel ($\theta = 0^{\circ}$) to the TOF axis. The red line recorded with the 193-nm photolysis laser off, represents background signals resulting from 236-nm photodissociation of the 2-chloro-2-butene precursor. By subtracting this 193-nm off spectrum from the 193-nm on spectrum, the net H-atom TOF spectrum originating from the 236-nm photodissociation of 2-buten-2-yl is obtained (as shown in Fig. 3, after accumulating over a larger number of laser shots).

2. Structure and excited electronic states of *trans*-2-buten-2-yl

Table S1. Cartesian coordinates (in Å) for the ground state structure of *trans*-2-buten-2yl optimized using CCSD/aug-cc-pVDZ. Electronic energy is -156.088535 Hartree.

C 2.02521800 -0.03823300 -0.00000200 H 2.50981900 -0.46848300 -0.89296100 H 2.50980700 -0.46861800 0.89289900 H 2.20692500 1.05614400 0.00008200 C 0.55864700 -0.30982600 -0.00003900 C -0.56771700 0.40146400 -0.00000100 H -0.47883100 1.50418300 0.00011000 C -1.97235200 -0.16869300 0.00001300 H -2.53166400 0.16934600 0.89066600 H -2.53173200 0.16950300 -0.89053700 H -1.94709900 -1.27034600 -0.00008400

Table S2. Cartesian coordinates (in Å) for the D_5 excited state structure of *trans*-2buten-2-yl optimized using EOM-CCSD/daug-cc-pVDZ. Electronic energy is -155.901421 Hartree.

С	2.01537300	-0.10277200	-0.00001900
Н	2.35990600	-0.59186300	-0.92408600
Н	2.35997600	-0.59193900	0.92398100
Н	2.46254400	0.93625600	0.00000700
С	0.60456200	0.16361100	0.00005800
С	-0.62513500	0.53615500	0.00013500
Η	-0.67947000	1.64489600	0.00014000
С	-1.94276300	-0.23590200	0.00000200
Н	-2.50364200	0.06923700	0.90129800
Н	-2.50358000	0.06939500	-0.90128500
Η	-1.76675100	-1.32063400	-0.00008600

Table S3. Cartesian coordinates (in Å) for the D_6 excited state structure of *trans*-2buten-2-yl optimized using EOM-CCSD/daug-cc-pVDZ. Electronic energy is -155.8978684 Hartree.

С	1.99593000	-0.11506600	0.00030600
Η	2.30551600	-0.64475700	-0.91748800
Η	2.30523100	-0.64374900	0.91877300
Η	2.53856400	0.87355400	-0.00019000
С	0.60031300	0.23613300	-0.00010700
С	-0.65323100	0.65114100	-0.00054900
Η	-0.79749400	1.74450700	-0.00097700
С	-1.89722900	-0.23601800	-0.00004900
Η	-2.48940800	0.00638800	0.90090600
Η	-2.49192800	0.00882700	-0.89864200
Η	-1.63524200	-1.30451900	-0.00183800

Table S4. Excited state energies of *trans*-2-buten-2-yl obtained with different electronic structure methods. Vertical excitation energies (VEE) are converted into nm and the oscillator strengths (f) are provided accordingly. The ground-state molecular geometry was optimized using CCSD/aug-cc-pVDZ optimized structure. Dominant natural transition orbital (NTO) excitations of *trans*-2-buten-2-yl obtained with CAM-B3LYP/6-31++G are listed for reference.

Excited states	NTO dominant transition	CAM-B3LYP/		CAM-B3LYP/		CAM-B3LYP/		EOM-CCSD/	
		6-31++G		aug-cc-pVQZ		daug-cc-pVQZ		aug-cc-pVDZ	
		VEE	f	VEE	f	VEE	f	VEE	f
		(nm)		(nm)	1	(nm)		(nm)	
D ₁	π→n	411.5	0.002	445.2	0.001	445.2	0.001	397.7	0.001
D ₂	$\pi \rightarrow \pi^*$	285.5	0.000	301.2	0.000	301.2	0.000	264.8	0.000
D ₃	$n \rightarrow \pi^*$	259.8	0.002	263.6	0.001	263.7	0.001	242.2	0.002
D ₄	n→3s Ry	229.3	0.002	222.7	0.002	223.2	0.002	217.4	0.002
D ₅	$n \rightarrow 3p_y Ry$	205.3	0.080	202.4	0.074	203.4	0.069	198.2	0.075
Adiabatic excitation energy of D_{c} (nm)		248.4 250.8		252.1		237.4			
D ₆	$n \rightarrow 3p_x Ry$	204.7	0.029	201.1	0.012	201.8	0.011	195.2	0.029
Adiabatic excitation energy of D_{c} (nm)		239.7		244.4		245.7		234.5	
D ₇	$\pi \rightarrow 3s Ry$	199.0	0.000						
D ₈	$\pi \rightarrow 3s Ry$	195.1	0.007						
	NTO dominant transition	EOM-CCSD/		EOM-CCSD/		EOM-CCSD/			
Excited		daug-cc-pVDZ		aug-cc-	pVTZ	daug-cc-pVTZ			
states		VEE	f	VEE	f	VEE	f		
		(nm)	1	(nm)	1	(nm)	1		
D ₁	π→n	397.7	0.001	399.1	0.001	399.0	0.001		
D ₂	$\pi \rightarrow \pi^*$	264.9	0.000	264.9	0.000	264.9	0.000		
D ₃	$n \rightarrow \pi^*$	242.4	0.002	244.2	0.002	244.3	0.002		
D ₄	n→3s Ry	218.8	0.002	213.8	0.002	214.3	0.002		
D ₅	$n \rightarrow 3p_y Ry$	200.7	0.067	195.5	0.071	196.7	0.066		
Adiabatic excitation energy of D_5 (nm)		240.2		236.5		237.8			
D ₆	$n \rightarrow 3p_x Ry$	197.1	0.025	192.4	0.026	193.2	0.024		
Adiabatic excitation energy of D_6 (nm)		235.8 23		2.1 233.4					

Table S5. Transition dipole moments and dominant natural transition orbital (NTO) excitations of *trans*-2-buten-2-yl obtained with CAM-B3LYP/6-31++G. The definition of the Cartesian x, y, and z vectors for the directions of transition dipole moments can be found in **Fig. S2**.

Excited states	Transition dipole moments			NTO			
	X	Y	Z	Squared	Character	Main transition(s)	Weight
D ₁	0	0	-0.167	0.028	π to n	15β→16β	1.96
D ₂	0.0335	0.023	0	0.002	π to π^*	16α→17α	1.06
					π to π^*	15β→16β	1.01
D ₃	0	0	-0.139	0.019	n to π^*	16α→17α	1.95
D ₄	-0.117	-0.038	0	0.015	n to 3s Ry	16α→17α	1.98
D ₅	-0.289	-0.676	-0.000	0.540	n to 3p _y Ry	16α→17α	1.99
D ₆	0.229	-0.378	-0.000	0.195	n to 3p _x Ry	16α→17α	1.98
D ₇	0	0	0.047	0.0022	π to 3s Ry	15β→16β	1.85
D ₈	0	0	0.211	0.0445	π to 3s Ry	16α→17α	1.43
					n to 3pz Ry	15α→18α	0.45

Fig. S2 The natural transition orbitals (NTOs) for transitions from the ground state D_0 to the excited state D_5 of *trans*-2-buten-2-yl (CAM-B3LYP/6-31++G). The directions of the Cartesian vectors with respective to the structures of the ground state D_0 and the D_5 state are displayed.

3. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of rate constants

The unimolecular rate constant calculations for 2-buten-2-yl decomposition into 2-butyme + H and 1,2-butadiene + H were computed using Rice–Ramsperger–Kassel–Marcus (RRKM)¹ theory under the experimental conditions. The RRKM expression for an energy dependent rate constants k(E) is given

by $k(E) = \frac{\sigma W^{\ddagger}(E-E^{\ddagger})}{h\rho(E)}$, where σ is the reaction path degeneracy, h is Planck's constant, $W^{\ddagger}(E-E^{\ddagger})$ is the total number of states for the transition state, and $\rho(E)$ represents the density of states of the energized reactants. The total number of states and the densities of states were determined using harmonic frequencies calculated at the CCSD(T)/augcc-PVTZ//CAM-B3LYP/6-311++G(d,p) level of theory. E was taken to be the excitation energy assuming it is transferred into the internal normal modes of 2-buten-2-yl. The rate constants were computed using the ab initio potential energy surface information in this work, at $p = 2 \times 10^{-6}$ Torr and T = 298 K, employing the MESMER package.² The calculated population of the reaction compounds over time at the 246 nm and 226 nm excitation energy are shown in Fig. S3 and S4, respectively. The rate constant for 2-buten-2-yl \rightarrow 2-butyne + H is determined to be $k = 4.5 \times 10^{11} s^{-1}$ at 246 nm and $7.1 \times 10^{11} s^{-1}$ at 226 nm; while for the decomposition to 1,2-butadiene + H, $k = 8.5 \times 10^{10} s^{-1}$ at 246 nm and $1.4 \times 10^{11} s^{-1}$ at 226 nm.

Fig. S3. The relative population for 2-buten-2-yl with an internal energy of 116.2 kcal/mol (246 nm), decomposes over time into 2-butyne + H and 1,2-butadiene + H at 298 K.

Fig. S4. The relative population for 2-buten-2-yl with an internal energy of 126.5 kcal/mol (226 nm), decomposes over time into 2-butyne + H and 1,2-butadiene + H at 298 K.

References:

- H. Eyring, S. H. Lin and S. M. Lin, *Basic Chemical Kinetics*, John Wiley & Sons, New York, 1980.
- D. R. Glowacki, C.-H. Liang, C. Morley, M. J. Pilling and S. H. Robertson, J. Phys. Chem. A, 2012, 116, 9545-9560.