Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024 ## Supplementary information for ## Selected ion flow tube studies of the reactions of H₃O⁺, NO⁺, O₂⁺ and O⁻ reagent anions with alkanes at different temperatures in He and N₂ carrier gases Maroua Omezzine Gnioua^{1,2}, Stefan J Swift^{1*} and Patrik Španěl¹ S1. Product ions for the reactions of the reagent ions with the alkanes observed using the Voice200infinity with a N_2 carrier gas at a flow tube temperature of 393 K with 4 V at the LE lens. The relative molecular mass of the alkanes is shown in parentheses after the alkane name; for the product ions, the m/z value of the product ion is shown first, followed by the formula and the branching ratio in parentheses. | Compound (RMM / Da) | H ₃ O ⁺ | NO ⁺ | $\mathbf{O_2}^{+\bullet}$ | |---------------------------|--|--|--| | n-Hexane (86) | 85 C ₆ H ₁₃ ⁺ (51)
71 C ₅ H ₁₁ ⁺ (49) | 85 C ₆ H ₁₃ ⁺ (88)
83 C ₆ H ₁₁ ⁺ (12) | 57 C ₄ H ₉ ⁺ (43)
56 C ₄ H ₈ ⁺ (31)
86 C ₆ H ₁₄ ⁺ (11)
42 C ₃ H ₆ ⁺ (8)
43 C ₃ H ₇ ⁺ (7) | | 3-Methylpentane (86) | 85 C ₆ H ₁₃ ⁺ (48)
71 C ₅ H ₁₁ ⁺ (27)
C ₆ H ₁₄ .H ₃ O ⁺ (25) | 85 C ₆ H ₁₃ ⁺ (100) | 56 C ₄ H ₈ ⁺ (62)
57 C ₄ H ₉ ⁺ (35)
71 C ₅ H ₁₁ ⁺ (3) | | 2,5-Dimethylhexane (114) | 113 C ₈ H ₁₇ ⁺ (86)
C ₈ H ₁₈ .H ₃ O ⁺ (14) | 113 C ₈ H ₁₇ ⁺ (100) | 99 C ₇ H ₁₅ ⁺ (29)
57 C ₄ H ₉ ⁺ (30)
71 C ₅ H ₁₁ ⁺ (13)
112 C ₈ H ₁₆ ⁺⁻ (8)
70 C ₅ H ₁₀ ⁺⁻ (8)
43 C ₃ H ₇ ⁺ (5)
42 C ₃ H ₇ ⁺ (3)
114 C ₈ H ₁₈ ⁺ (2)
56 C ₄ H ₈ ⁺⁻ (2) | | 2,3-Dimethylheptane (128) | 127 C ₉ H ₁₉ ⁺ (78)
C ₉ H ₂₀ .H ₃ O ⁺ (22) | 127 C ₉ H ₁₉ ⁺ (100) | 84 C ₆ H ₁₂ + (42)
85 C ₆ H ₁₃ + (32)
71 C ₅ H ₁₁ + (8)
83 C ₆ H ₁₁ + (7)
56 C ₄ H ₈ + (3)
70 C ₅ H ₁₀ + (3)
57 C ₄ H ₉ + (2)
69 C ₅ H ₉ + (2)
43 C ₃ H ₇ + (1) | ¹J Heyrovský Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23 Prague 8, Czechia ²Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2/747, 180 00, Prague 8, Czechia **S2.** Product ions for the reactions of the reagent ions with the alkanes observed using the Voice200infinity with a N_2 carrier gas at a flow tube temperature of 393 K with 7 V at the LE lens. The relative molecular mass of the alkanes is shown in parentheses after the alkane name; for the product ions, the m/z value of the product ion is shown first, followed by the formula and the branching ratio in parentheses. | Compound (RMM / Da) | H ₃ O ⁺ | NO ⁺ | O2 ^{+•} | |---------------------------|--|--|---| | <i>n</i> -Hexane (86) | 85 C ₆ H ₁₃ ⁺ (46)
71 C ₅ H ₁₁ ⁺ (54) | 85 C ₆ H ₁₃ ⁺ (85)
83 C ₆ H ₁₁ ⁺ (15) | 57 C ₄ H ₉ ⁺ (45)
56 C ₄ H ₈ ⁺ (35)
42 C ₃ H ₆ ⁺ (8)
43 C ₃ H ₇ ⁺ (7)
86 C ₆ H ₁₄ ⁺ (5) | | 3-Methylpentane (86) | 85 C ₆ H ₁₃ ⁺ (68)
71 C ₅ H ₁₁ ⁺ (32) | 85 C ₆ H ₁₃ ⁺ (96)
86 C ₆ H ₁₄ ⁺ (4) | 56 C ₄ H ₈ ⁺ (62)
57 C ₄ H ₉ ⁺ (35)
71 C ₅ H ₁₁ ⁺ (3) | | 2,5-Dimethylhexane (114) | 113 C ₈ H ₁₇ ⁺ (93)
C ₈ H ₁₈ .H ₃ O ⁺ (7) | 113 C ₈ H ₁₇ ⁺ (100) | 57 C ₄ H ₉ ⁺ (40)
99 C ₇ H ₁₅ ⁺ (24)
71 C ₅ H ₁₁ ⁺ (12)
112 C ₈ H ₁₆ ⁺ (7)
70 C ₅ H ₁₀ ⁺ (7)
43 C ₃ H ₇ ⁺ (5)
42 C ₃ H ₇ ⁺ (2)
56 C ₄ H ₈ ⁺ (2)
114 C ₈ H ₁₈ ⁺ (1) | | 2,3-Dimethylheptane (128) | 127 C ₉ H ₁₉ ⁺ (78)
C ₉ H ₂₀ .H ₃ O ⁺ (22) | 127 C ₉ H ₁₉ ⁺ (100) | 84 C ₆ H ₁₂ ⁺ (37)
85 C ₆ H ₁₃ ⁺ (32)
71 C ₅ H ₁₁ ⁺ (8)
83 C ₆ H ₁₁ ⁺ (7)
56 C ₄ H ₈ ⁺ (6)
70 C ₅ H ₁₀ ⁺ (3)
57 C ₄ H ₉ ⁺ (3)
69 C ₅ H ₉ ⁺ (2)
43 C ₃ H ₇ ⁺ (2) |