Electronic Supplementary Information (ESI):

Effect of Strain on Electronic Structure and Polaronic Conductivity in LiFePO₄

Manisha¹, Mukul Gupta² V. Raghavendra Reddy² and Sevi Murugavel¹*

¹Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India ²UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001, India

Table TS1. Synthesis conditions adopted for synthesizing LiFePO₄ samples

Specimen Code	Temperature (K)	Calcination duration (hr)
S1	1023	15
S2	973	12
S3	1023	06

Table TS2. Rietveld refinement parameters of LFP sample

Specimen Code			S1			
Wavelength			0.7177 A°			
	Space group			Pnma		
		Lattice p	arameter			
	a (A ^o)	b (A°) c (A°)			
10.33	97 ± 0.0002	6.0127 ±	0.0001	4.69	56 ± 0.0001	
	Volume (A ³)			291.925 ± 0.000	009	
	Li ⁺ Vacancy (%	%)	1.06%			
	$R_p(\%)$,		3.86%		
	$R_{wp}^{1}(\%)$		5.34%			
	$GOF(\chi^2)$		4.823			
Site	Wyckoff	x/a	y/b	z/c	Occupancy	
	Positions					
Li	4a	0.0000	0.0000	0.0000	0.9894	
Fe	4c	0.2821	0.25	0.9742	0.9661	
Fe 4a 0.0000			0.0000	0.0000	0.0037	
Р	4c	0.0957	0.25	0.4168	1.0000	
Ο	4c	0.0969	0.2500	0.7443	1.0000	
Ο	4c	0.4544	0.2500	0.2156	1.0000	
Ο	8d	0.1666	0.0465	0.2795	1.0000	

Specimen code			S2					
Wavelength			0.7134 A°					
	Space group	l .		Pnma				
Lattice parameter								
	a (Aº)	b ((A ⁰)		c (A ⁰)			
10.355	53 ± 0.0002	6.0226 =	± 0.0001	4.7026 ± 0.0001				
	Volume (A ³))		$293.284 \pm 0.$	006			
	Li ⁺ Vacancy (⁰	%)		0.3 %				
	$R_{p}(\%)$			3.07%				
	R_{wp} (%)		4.36%					
	GOF (χ^2)		2.994					
				1	1			
Site	Wyckoff	x/a	y/b	z/c	Occupancy			
	Positions							
Li	4a	0.0000	0.0000	0.0000	0.9970			
Fe 4c 0.28183(8)		0.2500	0.9739(26)	0.9984				
Fe 4a 0.0000			0.0000	0.0000	0.0017			
Р	4c 0.09480(19)		0.2500	0.4172(4)	1.0000			
Ο	4c	0.0962(4)	0.2500	0.7436(7)	1.0000			
Ο	4c	0.4561(5)	0.2500	0.2094(7)	1.0000			
Ο	8d	0.1669(34)	0.0456(5)	0.2852(5)	1.0000			

Specimen Code			\$3			
Wavelength			0.7134 A°			
	Space group	I.		Pnma		
Lattice parameter						
	a (Aº)	b ((Aº)		c (A ⁰)	
10.353	38 ± 0.0002	6.0204 =	± 0.0002	4.70	63 ± 0.0001	
	Volume (A ³)			$293.100 \pm 0.$	008	
	Li ⁺ Vacancy (%)		1.54 %		
	$R_p(\%)$			3.27%		
	R_{wp} (%)		4.46%			
	$GOF(\chi^2)$		3.809			
Site	Wyckoff	x/a	y/b	z/c	Occupancy	
	Positions					
Li	4a	0.0000	0.0000	0.0000	0.9846	
Fe	4c	0.2827	0.2500	0.9737	0.9996	
Fe 4a 0.0000			0.0000	0.0000	0.0000	
Р	P 4c 0.2803		0.2500	0.9766	1.0000	
Ο	4c	0.0953	0.2500	0.4160	1.0000	
Ο	4c	0.4564	0.2500	0.2087	1.0000	
Ο	8d	0.1651	0.0464	0.2836	1.0000	

	S1	S2	S3						
Fe-Octahedron									
Fe-O (1)	1 x 2.19875(5)	1 x 2.206(4)	1 x 2.223(5)						
Fe-O (2)	1 x 2.11162(4)	1 x 2.117(5)	1 x 2.112(5)						
Fe-O (3)	2 x 2.07274(4)	2 x 2.0607(29)	2 x 2.0675(32)						
Fe-O (3')	2 x 2.23098(4)	2 x 2.2508(27)	2 x 2.2594(30)						
Average Fe-O Bond	2.1529	2.1576	2.1648						
	Li- Oct	ahedron							
Li-O (1)	2 x 2.16890(4)	2 x 2.1709(27)	2 x 2.1908(32)						
Li-O (2)	2 x 2.06518(4)	2 x 2.0827(25)	2 x 2.0847(28)						
Li-O (3)	2 x 2.18363(4)	2 x 2.2034(33)	2 x 2.188(4)						
Average Li-O	2.13923	2.15233	2.1545						
	P Tetra	ahedron							
P-O (1)	1 x 1.53812(4)	1 x 1.5365(32)	1 x 1.508(4)						
P-O (2)	1 x 1.58714(4)	1 x 1.555(5)	1 x 1.551(6)						
P-O (3)	2 x 1.56528(3)	2 x 1.5682(32)	2 x 1.5537(35)						
Average P-O Bond	1.563955	1.5569	1.5416						
Bond angle									
O (1)-Fe-O (2)	177.984(0)	177.83(14)	180.000(1)						

Table TS3. Interatomic distances and bond angels evaluated from the Rietveld refinement

Table TS4. The isomer shift (δ), quadrupole splitting (ΔE_Q : doublet), outer line-width (Γ) and relative areas (R_A) in percentage of different sites of Fe³⁺ or Fe²⁺ ions for all five samples derived from Mössbauer spectra recorded at room temperature. Isomer shift values are relative to Fe metal foil ($\delta = 0.0 \text{ mms}^{-1}$). χ^2 : goodness of fit.

Specimen Code	Iron Sites	δ (mms ⁻¹)	$\frac{\Delta E_Q}{(\mathbf{mms}^{-1})}$	Г (mms ⁻¹)	R _A (%)	χ2
S1	Doublet-A Fe ²⁺	1.2485	2.9914	0.3556	92.82%	1.50
	Doublet-B Fe ³⁺	0.4772	0.6309	0.3912	7.18%	
S2	Doublet-A Fe ²⁺	1.2353	2.9882	0.3746	96.30%	0.89
	Doublet-B Fe ³⁺	0.4367	0.7580	0.3947	3.70%	
S3	Doublet-A Fe ²⁺	1.2543	2.9914	0.3603	99.22%	1.35
	Doublet-B Fe ³⁺	0.4203	0.8621	0.3933	0.78%	

Specimen Code	10Dq(eV) (Fe L edge)	D _s (eV)	D _t (eV)	$\begin{array}{l} \Delta t_{2g}(eV) \\ (3D_s\text{-}5D_t) \end{array}$	$\frac{\Delta e_{g} (eV)}{(3D_{s} + 5D_{t})}$
S1	1	0.48	0.05	1.19	1.69
S2	0.9	0.52	0.01	1.51	1.61
S 3	1.1	0.48	0.06	1.14	1.74

Table TS5. Simulated parameters for D_{4h} symmetry for the different LFP samples

Table TS5: Fe 3d orbital energies in LFP with D_{4h} symmetry calculated for different micro strain samples.

Specimen Code	$b_{1g}(eV)$	$a_{1g}(eV)$	$b_{2g}(eV)$	$e_g(eV)$
S1	1.51	-0.66	0.51	-1.13
S2	1.57	-0.56	0.67	-0.84
S3	1.56	-0.66	0.46	-0.68

Table TS7. Important Mott parameters related to electronic dc conductivity estimated by the

Speci men Code	ν _{ph} (Hz) 10 ¹³	E _a ^{HT} (eV)	E _a ^{IT} (eV)	$E_a^{LT}(eV)$	Polaron Concentr ation	Coupling Constant	$\sigma_{(dc)}$ (Scm ⁻¹) at 303K
S1	1.12	0.661 ±0.012	0.563 ±0.014	0.470 ±0.019	0.0071	14.35	3.216*10-8
S2	2.25	0.642 ±0.013	$\begin{array}{c} 0.547 \\ \pm 0.011 \end{array}$	0.468 ±0.018	0.006	13.98	4.206 *10-8
S3	1.56	0.506 ±0.017	0.465 ±0.004	0.414 ±0.0004	0.019	11.89	1.242*10-7

Mott model.

Figure S1. Magnified (211/020) diffraction peak showing broadening and shift towards lower angle with increasing strain

Figure S2. Experimental HRXRD pattern (squares in red color) of LiFePO₄, compared with theoretical line profile by Rietveld Refinement (continuous line in blue color), a difference of experimental and theoretical curve is represented by the continuous line in green color. Vertical markers in pink color indicate Bragg's reflection for orthorhombic LiFePO₄

Fig. S3. Fitted ⁵⁷Fe Mossbauer spectra along with experimental spectra for S1 and S2 specimens. The red-filled circles represent the experimental data and the black solid line indicates the fitted spectra. The green and red solid lines correspond to the contributions from the predominant Fe^{2+} and the trace Fe^{3+} species, respectively.

Figure S4. Simulated Fe L edge XAS spectra along with the experimental spectra. Square symbol represents the experimental spectra of S2 LFP specimen and solid red line represents the simulated spectra with the CTM4XAS software

Figure S5. The variation of intensity ratio of pre-edge to post-edge of the O k edge and integrated Fe L edge intensity of XAS spectra for different specimens

Figure S6. Nyquist plot of different LFP samples at 303 K.

Figure S7. The variation of dc conductivity, $\sigma_{(dc)}$ and activation energy (LT) for different specimens.