Electronic Supplementary Information

On the ground and excited electronic states of LaCO and AcCO

Isuru R. Ariyarathna

Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Email: isuru@lanl.gov

Contents

Table S1 DFT D_e and % DFT D_e errors of LaCO(1 ⁴ Σ -)	Page S2
Figure S1 Select molecular orbitals of La(η^2 -CO) (⁴ A'')	Page S3
Table S2 DFT IE and % DFT IE errors of LaCO($1^{4}\Sigma^{-}$)	Page S4
Figure S2 Select molecular orbitals of Ac(η^2 -CO) (² A')	Page S5
Table S3 Cartesian coordinates of the optimized transition states	Page S6
Figure S3 Spin-orbit coupling curves of AcCO	Page S7

Table S1. Dissociation energy of LaCO(1⁴ Σ -) calculated with various density functional approximations (DFA) with respect to La(⁴F)+CO(X¹ Σ +) fragments (D_e, kcal/mol) and the % DFT D_e error with respect to the QZ-CCSD(T) D_e (i.e., 27.12 kcal/mol). CCSD(T) D_e obtained with respect to the same La(⁴F)+CO(X¹ Σ +) fragments.

Family of functional	DFA	D _e	% DFT error
GGA	BP86	41.91	54.5
	BLYP	37.56	38.5
	PBE	42.81	57.9
MGGA	TPSS	39.00	43.8
	MN15-L	37.37	37.8
global GGA Hybrid	B3LYP	33.38	23.1
	B3P86	37.48	38.2
	B3PW91	35.06	29.3
	PBE0	35.62	31.3
MGGA Hybrid	TPSSh	36.41	34.2
	M06	38.47	41.9
	M06-2X	37.15	37.0
	MN15	33.21	22.5
RSH	LRC-wPBE	31.10	14.7
	CAM-B3LYP	31.85	17.4
	ωB97X	32.69	20.6

Figure S1. The singly-occupied molecular orbitals of La(η^2 -CO) (⁴A'').

Family of functional	DFA	IE	% DFT error
GGA	BP86	5.672	6.7
	BLYP	5.456	2.6
	PBE	5.556	4.5
MGGA	TPSS	5.332	0.3
	MN15-L	5.127	-3.6
global GGA Hybrid	B3LYP	5.507	3.6
	B3P86	6.025	13.3
	B3PW91	5.473	3.0
	PBE0	5.415	1.9
	TPSSh	5.290	-0.5
MGGA Hybrid	M06	5.070	-4.6
	M06-2X	5.371	1.0
	MN15	5.063	-4.8
RSH	LRC-wPBE	5.138	-3.3
	CAM-B3LYP	5.365	0.9
	ωB97X	4.932	-7.2

Table S2. Ionization energy of LaCO($1^{4}\Sigma^{-}$) calculated with various density functional approximations (DFA) (IE, eV) and the % DFT error with respect to the QZ-CCSD(T) IE (i.e., 5.316 eV).

Figure S2. The singly-occupied 1a' and doubly-occupied 2a' molecular orbitals of Ac(η^2 -CO) (²A').

Table S3. Cartesian coordinates of the transition states lie in between LaCO \rightarrow La(η^2 -CO) and AcCO \rightarrow Ac(η^2 -CO) reactions at the DFT/B3LYP level.

TS [LaCO \rightarrow La(η^2 -CO)]	TS [AcCO \rightarrow Ac(η^2 -CO)]
La 0.000000 0.515841 0.000000	Ac -0.000000 0.404422 0.000000
C 0.588159 -1.760702 -0.000000	C 0.582714 -2.240353 0.000000
0 -0.441119 -2.354839 0.000000	0 -0.437035 -2.818926 -0.000000

Figure S3. Select MRCI spin-orbit coupling curves of AcCO as a function of Ac···CO distance [r(Ac···CO), Å]. The relative energies are referenced to the lowest energy spin-orbit curve of Ac(²D)+CO(X¹\Sigma⁺) at the dissociation limit, which is set to 0 kcal/mol. At each scan the C–O length is kept fixed to the 1.159 Å. The $\Omega = 1/2$, $\Omega = 3/2$, and $\Omega = 5/2$ curves are shown in blue, red, and green, respectively.