## Supplemental Material

## Structural evolution and superconductivity of Thorium under high pressure and its modulation.

Lihui Zhan,<sup>1</sup> Wenhao Fan,<sup>1</sup> Junyi Miao,<sup>1</sup> Shi He,<sup>1</sup> Qingzhuo Duan,<sup>1</sup> Xilong Dou,<sup>2</sup> and Cheng Lu<sup>1,\*</sup>

<sup>1</sup>School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China <sup>2</sup>School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China (Dated: September 8, 2024)



Fig. S1. The enthalpy curves of Th under high pressure from 60 GPa to 300 GPa.



Fig. S2. Phonon dispersion curves of Th under different pressures. (a)  $Fm\overline{3}m$  phase at ambient pressure, (b) Fmmm phase at 8 GPa, (c) I4/mmm phase at 10 GPa, (d) Immm phase at 60 GPa.



Fig. S3. The PDOS of Th under different pressures. (a)  $Fm\overline{3}m$  phase at 0 GPa, (b) Fmmm phase at 8 GPa, (c) I4/mmm phase at 10 GPa, and (d) Immm phase at 60 GPa. The position represented by the dashed line is the Fermi level.



Fig. S4. Calculated orbital-resolved band structures corresponding to different orbitals of the  $Fm\overline{3}m$  phase of Th under ambient pressure. (a)  $d_{x^2-y^2}$ , (b)  $d_{z^2}$ , (c)  $d_{xz}$ , and (d)  $d_{xy}$  orbitals. The thicknesses of curves represent the weight of orbitals in the corresponding band structures.



Fig. S5. Calculated orbital-resolved band structures corresponding to different orbitals of the  $Fm\overline{3}m$  phase of Th at ambient pressure. (a)  $f_{zx^2}$ , (b)  $f_{z^3}$ , (c)  $f_{yz_2}$ , (d)  $f_{y^3}$ , (e)  $f_{xz^2}$  and (f)  $f_{x^3}$  orbitals. The thicknesses of curves re-present the weight of orbitals in the corresponding band structures.



Fig. S6. The 5f bands of Th and the 2p bands of light elements at ambient pressure. (a) The 5f bands of Th and the 2p bands of boron. (b) The 5f bands of Th and the 2p bands of carbon. (c) The 5f bands of Th and the 2p bands of nitrogen. (d) The 5f bands of Th and the p bands of hydrogen.



Fig. S7. (a) The energy bands of Th based light element compounds at ambient pressure. The red solid line represents the energy band of ThB, the black dashed line represents the energy band of ThC, and the blue dashed line represents the energy band of ThN. (b) ELF diagrams of the (111) plane of ThB, ThC, and ThN.



Fig. S8. The ELF diagrams of the I4/mmm phase of Th in (111) plane under high pressure. (a)10 GPa, (b)20 GPa, (c)30 GPa, and (d)40 GPa. The atoms marked by "A" and "B" are the nearest-neighbor atoms.



Fig. S9. Calculated phonon dispersion curves of Th based light element compounds at ambient pressure. (a) ThB, (b) ThC, (c) ThH, and (d) ThN.



Fig. S10. (a) Electronic band structure and DOSs of ThN. The green orbital represents the 5f bands of Th atoms. The red orbital represents the 2p bands of N atoms. (b) Phonon dispersion curves, PHDOSs, Eliashberg function  $\alpha^2 F(\omega)$  and EPC parameter  $\lambda$  of the  $Fm\overline{3}m$  phase of ThN under ambient pressure. The relative intensities of the EPC parameters  $\lambda_{qv}$  are represented by the thickness of the red line.



Fig. S11. The bands crossing the FEL of Th at 8GPa and 9GPa in Fmmm structure  $% \left( {{{\rm{F}}_{\rm{F}}}} \right)$ 

| Space group       | Lattice parameters                           | Atomic coordinates (fractional) |  |  |  |
|-------------------|----------------------------------------------|---------------------------------|--|--|--|
| $Fm\overline{3}m$ | a=b=c=4.3975 Å                               | $0.500 \ 0.000 \ 0.500$         |  |  |  |
|                   | $\alpha=\beta=\gamma=90^\circ$               | $0.500 \ 0.500 \ 0.000$         |  |  |  |
|                   |                                              | $0.000 \ 0.500 \ 0.500$         |  |  |  |
|                   |                                              | $0.000 \ 0.000 \ 0.000$         |  |  |  |
| Fmmm              | a= 4.1616 Å, $b=$ 4.6751 Å, $c=$ 4.2708 Å    | $0.000 \ 0.000 \ 0.500$         |  |  |  |
|                   | $\alpha=\beta=\gamma=90^\circ$               | $0.000 \ 0.500 \ 0.000$         |  |  |  |
|                   |                                              | $0.500 \ 0.000 \ 0.000$         |  |  |  |
|                   |                                              | $0.500 \ 0.500 \ 0.500$         |  |  |  |
| I4/mmm            | a = b = 3.1249 Å, $c = 4.0399$ Å             | $0.500 \ 0.500 \ 0.000$         |  |  |  |
|                   | $\alpha=\beta=\gamma=90~^\circ$              | $0.000 \ 0.000 \ 0.500$         |  |  |  |
| Immm              | a = 2.9065 Å, $b = 3.0234$ Å, $c = 4.7951$ Å | $0.500 \ 0.500 \ 0.000$         |  |  |  |
|                   | $\alpha=\beta=\gamma=90^\circ$               | $0.000 \ 0.000 \ 0.500$         |  |  |  |

Table S1. The calculated lattice parameters of Th at ambient pressure.

| Compounds                   | λ    | $\omega_{log}(K)$ | $\mu_*$ | $T_c(K)$          |
|-----------------------------|------|-------------------|---------|-------------------|
| $\mathrm{ThH}$              | 0.53 | 171.053           | 0.10    | $2.67 \mathrm{K}$ |
| $\mathrm{ThB}$              | 1.02 | 173.626           | 0.10    | 12.48K            |
| $\mathrm{ThC}$              | 0.52 | 314.989           | 0.10    | 4.30K             |
| $\mathrm{ThN}$              | 0.39 | 280.175           | 0.10    | 1.04K             |
| $\mathrm{ThN}_2$            | 1.09 | 134.497           | 0.10    | 10.63 K           |
| $\mathrm{Th}_{4}\mathrm{H}$ | 0.64 | 107.657           | 0.10    | 2.99 K            |
| $\mathrm{Th}_4\mathrm{C}$   | 0.91 | 131.150           | 0.10    | $7.80\mathrm{K}$  |

Table S2. The calculated EPC strength  $\lambda$ , the logarithmic average phonon frequency  $\omega_{log}$ , and the  $T_c$  values of Th based light element compounds at ambient pressure.

| phase                           | pressure | $C_{11}$ | $C_{12}$ | $C_{13}$ | $C_{22}$ | $C_{23}$ | $C_{33}$ | $C_{44}$ | $C_{55}$ | $C_{66}$ |
|---------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $Fm\overline{3}m$               | 0GPa     | 92.27    | 36.34    | -        | -        | -        | -        | -        | -        | 62.66    |
| Fmmm                            | 8GPa     | 106.97   | 52.05    | 52.38    | 106.09   | 52.87    | 105.29   | 79.09    | 80.74    | 81.91    |
| I4/mmm                          | 10GPa    | 170.86   | 2.55     | 62.57    | -        | -        | 114.64   | 87.78    | -        | 29.76    |
| Immm                            | 60GPa    | 415.02   | 42.82    | 178.50   | 413.78   | 176.19   | 237.27   | 166.75   | 158.50   | 42.73    |
| $Fm\overline{3}m({ m ThB})$     | 0GPa     | 124.61   | 84.82    | -        | -        | -        | -        | 39.18    | -        | -        |
| $Fm\overline{3}m(ThC)$          | 0GPa     | 216.78   | 83.04    | -        | -        | -        | -        | 80.98    | -        | -        |
| $Fm\overline{3}m(\mathrm{ThN})$ | 0GPa     | 344.25   | 106.30   | -        | -        | -        | -        | 77.42    | -        | -        |
| $Fm\overline{3}m(ThH)$          | 0GPa     | 90.88    | 69.46    | -        | -        | -        | -        | 35.62    | -        | -        |

 $^{\ast}$  Electronic address: <br/> lucheng@calypso.cn