Supporting information

Nonadiabatic *ab initio* chemical reaction dynamics on photoisomerization reaction of 3,5-dimethylisoxazole via the S_1 electronic state

Mizuki Kimura^a and Shinkoh Nanbu*^b

^a Graduate School of Science and Technology, Sophia University, Japan, Chiyoda, Tokyo 102-8554, Japan. Email: <u>m-kimura-0o3@eagle.sophia.ac.jp</u>

^b Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan

С	-1.0807968992	-0.1539346183	0.0000413499
0	-0.6956793940	1.1154687627	0.0002126342
С	1.1180432032	-0.0835435722	0.0000418655
С	0.0072335861	-0.9700101663	-0.0000731874
Н	0.0119141080	-2.0458347911	-0.0002195165
Ν	0.7068855225	1.1861933694	0.0002178806
С	2.5800859095	-0.4061675012	-0.000002889
н	2.8465515175	-0.9892996825	-0.8830950506
Н	3.1666385010	0.5109069911	0.0001125293
Н	2.8465596987	-0.9895446218	0.8829170534
С	-2.5518274005	-0.4113644303	0.0000114633
Н	-3.0177176837	0.0253751514	-0.8834620528
Н	-2.7411160110	-1.4837469412	-0.0001352872
н	-3.0177110631	0.0251321742	0.8836085392

3,5-dimethylisoxazole cartesian coordinates (Å) at XMS-CASPT2

3,5-dimethylisoxazole cartesian coordinates (Å) at SA4-CASSCF

С	-1.0837935534	-0.1563189470	0.0000407423
0	-0.6996231333	1.1212286737	0.0002126098
С	1.1211549246	-0.0802075405	0.0000418025
С	0.0062327251	-0.9709083766	-0.0000737954
Н	0.0171859222	-2.0466641533	-0.0002198474
Ν	0.7127128686	1.1876898265	0.0002184199
С	2.5828337652	-0.4058281698	-0.0000008999
Н	2.8459517777	-0.9904278277	-0.8830628445
Н	3.1727419093	0.5091853677	0.0001148214
Н	2.8459583901	-0.9906763671	0.8828830206
С	-2.5547245554	-0.4114151366	0.0000118302
Н	-3.0219810679	0.0242015854	-0.8834272549
Н	-2.7436120934	-1.4841907225	-0.0001328988
н	-3.0219742844	0.0239619114	0.8835722108

Table S1(a) The primary CSF for each state and the squared values of transition dipole moment (TDM) at SA4-CASSCF

Electronic State	Primary Electronic Configuration	TDM^2/a_0^2
<i>S</i> ₁	$\textit{Ryd} \leftarrow (\pi_{NO} + \pi_{CCC})^*$	0.119
S ₂	$\pi_{NC}^{*} + \pi_{OC}^{*} \leftarrow (\pi_{NO} + \pi_{CCC})^{*}$	0.437
<i>S</i> ₃	$\pi_{NC}^{*} + \pi_{OC}^{*} \leftarrow (n_N + \sigma_{CO + CC})^{*}$	0.111

Table S1(b) The vertical excitation energy (E_h)

Electronic State	XMS-CASPT2/	SA4-CASSCF/	SAC-CI/	SAC-CI/
	cc-pVDZ + <i>sp</i>	cc-pVDZ + <i>sp</i>	aug-cc-pVDZ	cc-pVTZ
S ₀	-323.01051634	-323.53623696	-323.262988	-323.375982
<i>S</i> ₁	-322.77050436	-323.28875461	-323.032850	-323.128486
<i>S</i> ₂	-322.76137757	-323.28280562	-323.024065	-323.120191
<i>S</i> ₃	-322.74817739	-323.26228710	-323.007678	-323.087671

around C5 carbon

Fig. S1 The molecular orbitals (MOs) in the active space for SA4-CASSCF

Configuration State Function (CSF)	<i>S</i> ₀	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
(24a) ² (25a) ² (26a) ² (27a) ⁰ (28a) ⁰ (29a) ⁰	-0.9387224	0.0000001	-0.0000204	-0.0433679
(24a) ² (25a) ² (26a) ¹ (27a) ⁰ (28a) ¹ (29a) ⁰	-0.0000001	0.9269819	0.0040877	-0.0000004
(24a) ² (25a) ² (26a) ¹ (27a) ¹ (28a) ⁰ (29a) ⁰	0.0000002	0.0041877	0.9149561	-0.0004300
$(24a)^1(25a)^2(26a)^1(27a)^1(28a)^0(29a)^0$	0.0866112	0.0000018	-0.0003280	-0.6938881
(24a) ¹ (25a) ² (26a) ² (27a) ⁰ (28a) ⁰ (29a) ¹	0.0550695	0.0000005	0.0001656	0.3500992
(24 <i>a</i>) ² (25 <i>a</i>) ² (26 <i>a</i>) ⁰ (27 <i>a</i>) ¹ (28 <i>a</i>) ⁰ (29 <i>a</i>) ¹	-0.0300139	-0.0000000	0.0001544	0.3331554

Table S2(a) The coefficients of the correlation interaction (CI) for the S_0 , S_1 , S_2 , and S_3 states at XMS-CASPT2 level

Table S2(b) The CI coefficients for each electronic state at SA4-CASSCF level

Configuration State Function (CSF)	<i>S</i> ₀	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
(24a) ² (25a) ² (26a) ² (27a) ⁰ (28a) ⁰ (29a) ⁰	-0.9383068	0.0000001	-0.0439348	0.0000123
(24a) ² (25a) ² (26a) ¹ (27a) ⁰ (28a) ¹ (29a) ⁰	-0.000003	0.9267115	0.0000040	0.0034411
(24a) ² (25a) ² (26a) ¹ (27a) ¹ (28a) ⁰ (29a) ⁰	0.0850873	0.0000037	-0.7063145	0.0001956
(24a) ¹ (25a) ² (26a) ² (27a) ¹ (28a) ⁰ (29a) ⁰	0.0562196	0.000008	0.3372313	-0.0000930
(24a) ¹ (25a) ² (26a) ² (27a) ⁰ (28a) ⁰ (29a) ¹	-0.0307454	-0.000003	0.3273773	-0.0000958
(24a) ² (25a) ¹ (26a) ² (27a) ¹ (28a) ⁰ (29a) ⁰	0.000003	0.0043313	0.0002571	0.9139180

(id, Time / fs)	Distance, d	Probability, p	Geometry1	Geometry2
(021, 74.75), (495, 114.25)	3.24	0.92, 0.88		ىرى بەر ئىرى
(133, 77.75), (385, 372.00)	3.19	1.00, 0.92		est of the second
(159, 50.00), (531, 128.00)	3.24	1.00, 0.99	y ay ay	in the second
(397, 55.00), (487, 512)	3.24	0.96, 0.96	og by by o	ي. موضوعة و
(417, 82.00), (495, 114.25)	3.15	1.00, 0.88		ىرە بولۇرىغۇرىيە

Table S3 (a) The first peak of the histogram of distance in comparison by brute force of structures with non-adiabatic transitions

(id, Time / fs)	Distance, d	Probability, p	Geometry1	Geometry2
(105, 343.50), (257, 71.75)	6.62	0.97, 0.68		
(151, 26.00), (403, 127.75)	6.62	0.97, 0.87	y g g g	3 - go go
(181, 53.50), (293, 77.25)	6.61	0.88, 0.84	stage of the	
(263, 216.75), (429, 138.50)	6.63	0.97, 0.92	3 ag ag	
(443, 87.00), (595, 261.50)	6.67	0.29, 0.93		the second second

Table S3 (b)The second peak of the histogram of distance in comparison by brute force of structures with non-adiabatic transitions

Table S4 (a)The primary peak around d=18.03

(id, Time / fs)	Distance, d	Probability, p	Geometry
(021, 132.75)	18.15	0.54	
(095, 67.75)	18.21	0.98	and the second sec
(185, 320.00)	18.17	0.61	مرو ه <mark>و</mark> م
(203, 64.00)	17.90	0.96	age age
(231, 413.00)	18.06	0.98	

Table S4 (b) The subsidiary peak around d = 9.98

(id, Time / fs)	Distance, d	Probability, p	Geometry
(011, 24.00)	9.98	0.84	in the second
(349, 21.25)	9.91	0.95	y g g g g
(145, 25.00)	10.07	0.54	3- 2- 3- 3- 3-
(157, 18.00)	9.87	1.00	y y y y y
(519, 19.75)	10.09	0.98	y y y y y y

Table S4 (c) Time-resolved histograms.

Fig. S2 (a) and (b) are time variations of the CI-coefficients between 100 fs corresponding to Figures 6(b) and 6(d).

Time / fs	26 <i>a</i>	27a	28a
0.00			
10.0			

Table S5 (a) The time variation for molecular orbitals on the trajectory producing azirine after photoexcitation

Time / fs	26 <i>a</i>	27a
18.75	y y	
22.50	·	
23.50	y Contraction	
25.00		
50.00		
100.00		
150.00		
250.00		

Table S5(b) The time variation for molecular orbitals on the trajectory producing azirine

Time / fs	24 <i>a</i>	25 <i>a</i>	26 <i>a</i>	27a	28 <i>a</i>
0.00	y . So so		Y Contraction	*** *	
15.50	K	y 😲 🍃	y Cont		9
68.25		** **			Leg u
69.75		Here			
74.75					
79.50				- 	
86.50		٩		J.	
104.75					

Table S5(c) The time variation for molecular orbitals on the trajectory producing azirine after photoexcitation

Fig. S3 The isomerization pathways to nitrile ylide product at XMS-CASPT2 level: (a) the potential energies of four electronic states over the time evolution, and (b) CI coefficients over the same time are shown. The legends used in (b) is mentioned in Fig. 6.

Time / fs	26a	27a	28 <i>a</i>
0.00	No the second se		
4.75			Contraction of the second seco
7.25		Region	
7.50			e e e e e e e e e e e e e e e e e e e

Table S6(a) The time variation for molecular orbitals on the trajectory producing nitrile ylide and oxazole

Table S6(b) The time variation for molecular orbitals on the trajectory producing nitrile ylide and oxazole

Time / fs	26 <i>a</i>	27a
21.50	Ř	
76.00		

Table S6(c) The time variation for molecular orbitals on the trajectory producing nitrile ylide

Table S6(d) The time variation for molecular orbitals on the trajectory producing oxazole

.,				~	
Time/ fs	24a	25 <i>a</i>	26 <i>a</i>	27a	28a
0.00	¥ 🌏 🔊	Y Contraction of the second se	Y Contraction	Se antipation and a second	e.
16.75		ب <mark>نی کر</mark>	یک پنج		
28.25		Ĵ -ze ţč	Jacob Contraction	1	
55.75	i the second sec				
65.00	Rev.		Jer Brit		
92.50			in the second second		
361.75	Ş				***

Table S7(a) The time variation for molecular orbitals on the trajectory producing ketenimine

Time / fs	25 <i>a</i>	26 <i>a</i>	27 <i>a</i>	28 <i>a</i>
375.00	y of the second	ې چې	· Sector	
400.00	- Z			

Table S7(b) The time variation for molecular orbitals on the trajectory migrating the methyl group.

Fig. S4 The methyl shift, (a) the optimized geometry of conical intersection, (b) MOs at the optimized conical intersection, (c) MOs for the methyl migration in our trajectory, and (d) MOs for methyl radical only

Table S8 The other products

Fig. S5 The molecular orbitals for the other products for (a) the C3-C7 bond dissociation, (b) CH₃CN + CH₃CCO, and (c) CH₃CN

Time / fs	26 <i>a</i>	27a
24.00		
25.00		
50.00		¥ 1
75.00		
81.25		
87.50		
93.75		
100.00		

Table S9 The time variation of molecular orbitals for producing acetonitrile and 1,2 -shift