Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

for

Hydrogen passivation strategy for electrocatalytic chlorine evolution reaction on metalorganic frameworks: A theoretical insight

Jiake Fan, Lei Yang, Hui Li, Zijian Sun, Mengyun Mei, Weihua Zhu*

Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^{*} Corresponding author. E-mail: zhuwh@njust.edu.cn

Table S1. The cell information of TM₃(THT)₂ (TM=Mn, Fe, Co, Ni, Tc, Ru, Rh, Pd, Re, Os, Ir, Pt).

	a/Å	b/Å	c/Å	alpha/°	beta/°	gamma/°
Mn	23.655	23.655	3.4855			
Fe	23.5513	23.5513	3.4333			
Co	23.3401	23.3401	3.3756			
Ni	23.2498	23.2498	3.4061			
Tc	23.839	23.839	3.3233			
Ru	23.7616	23.7616	3.2356	90	90	120
Rh	23.7055	23.7055	3.2784	90	90	120
Pd	23.7065	23.7065	3.3768			
Re	23.8565	23.8565	3.3528			
Os	23.7774	23.7774	3.2454			
Ir	23.7222	23.7222	3.2819			
Pt	23.6815	23.6815	3.3921			

Table S2. Charge changes of the main atoms of different intermediates during CER and OER after hydrogen passivation of Re₃(THT)₂ (Re is the metal site, H corresponds to the hydrogen atom used for passivation of Re, S corresponds to the site used for subsequent CER and OER reactions, and Cl/HO/O/HOO corresponds to the different adsorbates)

	Re	Н	S	Cl/HO/O/HOO
*Cl	-0.312	0.077	0.092	-0.208
НО*	-0.336	0.074	0.233	-0.101
O*	-0.176	0.13	0.177	-0.364
HOO*	-0.324	0.069	0.164	-0.159

Table S3. The adsorption energy of hydrogen atoms on metal sites before hydrogen passivation (E_{*-H}) and the adsorption energy of hydrogen atoms on sulfur sites after hydrogen passivation (E_{*-H-H}).

	E _{*-H} /eV	E _{*-H-H} /eV
Fe ₃ (THT) ₂	-0.06	0.02
Co ₃ (THT) ₂	-0.27	-0.01
Tc ₃ (THT) ₂	-0.81	0.27
Ru ₃ (THT) ₂	-0.79	0.02
Rh ₃ (THT) ₂	-0.50	-0.07
Re ₃ (THT) ₂	-1.47	0.36
Os ₃ (THT) ₂	-0.96	0.22
Ir ₃ (THT) ₂	-0.69	0.10

Figure S1. Relationship between the atomic number of transition metals in $TM_3(THT)_2$ and the unit cell "a" of $TM_3(THT)_2$.

Figure S2. Adsorption energy of Cl atoms on transition metal sites and sulfur sites. (the sulfur sites of $Mn_3(THT)_2$ cannot adsorb Cl atom and the corresponding point cannot be marked in this figure).

Figure S3. Density states of the p orbital of Cl and the d orbital of Re when Cl is adsorbed on the Re site of Re₃(THT)₂.

Figure S4. Adsorption energy of chlorine on the S site of Re₃(THT)₂ after H passivation; adsorption energy of chlorine on the metal site of Re₃(THT)₂ before H passivation.

Figure S5. RMSD curve obtained by molecular dynamics trajectory analysis of Re₃(THT)₂ in aqueous solution for 5ns (a) before hydrogen passivation and (b) after hydrogen passivation.

Figure S6. Evolution of the bond lengths between Re and S atoms during molecular dynamics simulation of Re₃(THT)₂ in aqueous solution before hydrogen passivation.

Figure S7. Evolution of the bond lengths (a)~(d)between Re and S atoms and (e) between Re and H atoms during molecular dynamics simulation of Re₃(THT)₂ in aqueous solution after hydrogen passivation.

Figure S8. The Gibbs free energy change of chlorine evolution reaction on Re metal site and S site. (*-H-Cl corresponds to Cl adsorbed on the sulfur site; *-HCl1 corresponds to Cl adsorbed on Re, on the same side of H; *-HCl2 corresponds to Cl adsorbed on Re, on the opposite side of H)

Figure S9. Gibbs free energy change of CER on the double layer Re₃(THT)₂ after passivation(a) (configuration 1) and (b) (configuration2); and Gibbs free energy change of CER on the 2x1x1 Re₃(THT)₂ after passivation (c).