Supporting Information

Electrofluorochromism Based on Valence Change of Europium Complexes in Electrochemical Devices with Prussian Blue as Counter Electrode

Ryoto Yabuta, Norihisa Kobayashi, and Kazuki Nakamura*

Figure Captions

Fig. S1.

XRD patterns of the PB-modified electrode. ITO electrode is also shown at the bottom for comparison.⁵¹

Fig. S2.

Absorption spectrum of the PB-modified electrode.

Fig. S3.

Absorption spectra of the PB-modified electrode under bias potentials of +1.0 V (black) and -2.0 V (red) in PEG₄₀₀ containing (a) LiCF₃SO₃ (500 mM) and (b) LiCF₃SO₃ (500 mM) and Eu(hfa)₃·(H₂O)₂ (10 mM).

Fig. S4.

Changes in the absorption at 700 nm (top) and cyclic voltammogram (bottom) of the PBmodified electrode in PEG400 electrolyte solution containing Eu (NO₃)₃-6H₂O (10 mM).

Fig. S5.

Cyclic voltammograms of Eu(NO₃)₃·6(H₂O) in PEG₄₀₀. ([LiCF₃SO₃] = 500 mM (black line), [LiCF₃SO₃] = 500 mM and [Eu(NO₃)₃·(H₂O)₂] = 10 mM (red line)).

Fig. S6.

Cyclic voltammograms of the two-electrode devices (ITO-ITO (black line), ITO-CM (red line), and ITO-PB (blue line)).

Fig. S7.

Fluorescence switching responses of the ITO-ITO and ITO-PB devices monitored (a) at 615 nm and (b) at 420 nm under different applied voltages of -2.4 to +1.5 V (ITO-ITO device), -0.9 to +2.5 V (ITO-PB device) with a step duration time of 100 and 300 s at each voltage. The excitation wavelength was 365 nm.

