Supplementary Information

Dynamics of fluorinated imide-based ionic liquids using Nuclear Magnetic Resonance techniques

Tawhid Pranto^{a,b}, Carla C. Fraenza^{c,*1}, Frederik Philippi^d, Daniel Rauber^e, Christopher W. M. Kay^{e,f}, Tom Welton^d, Steven G. Greenbaum^{a,c}, Sophia Suarez^{a,b,*}

^aDepartment of Physics, The Graduate Center of CUNY, New York, NY, USA.

^bDepartment of Physics, Brooklyn College of CUNY, New York, NY, USA.

^cDepartment of Physics & Astronomy, Hunter College of CUNY, New York, NY, USA.

^dDepartment of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.

^eDepartment of Chemistry, Saarland University, Saarbrücken, Germany.

^fLondon Centre for Nanotechnology, University College London, London, UK.

*Corresponding authors

E-mail: carla.cecilia.fraenza@unc.edu.ar (Carla C. Fraenza), snsuarez@brooklyn.cuny.edu (Sophia Suarez).

¹Present address: IFEG-CONICET and National University of Cordoba, Cordoba, Argentina.

1. Self-diffusion coefficients measured by PFG-NMR

Figure S1. Temperature dependence of self-diffusion coefficients of (a) the [BMIM]⁺ cation and (b) the anions ([FSI]⁻, [BETI]⁻, [NTfAc]⁻, [TFSM]⁻, [6cPFSI]⁻ and [NMsTFA]⁻) in the ILs. Self-diffusion coefficients for [BMIM]⁺ and [TFSI]⁻ in [BMIM][TFSI] are included for comparison purposes and the values at 60°C are taken with permission from reference (20). Lines represent the linear fittings of the data using an Arrhenius equation.

	$D \ [m^2/s] \times 10^{-12}$														
Temperature (°C)	[BMIM] [] [TFSM] [N		[BM [NMs	[BMIM] [BN NMsTFA] [NT		4IM] [BN [fAc] [6c]		IIM] PFSI]	[BMIM] [BETI]		[BMIM] [FSI]		[BMIM] [B(CN) ₄]	[BMIM] [TFSI]	
	¹ H	¹⁹ F	ιH	¹⁹ F	1H	¹⁹ F	1H	¹⁹ F	ΊH	¹⁹ F	¹ H	¹⁹ F	ΊΗ	ΊH	¹⁹ F
25	9.8 ±0.4	7.9 ±0.3	5.0 ±0.2	4.1 ±0.2	10.1± 0.4	7.7 ±0.3	8.8 ±0.3	5.7 ±0.2	12.4 ±0.5	8.5 ±0.2	40.5 ±1	40 ±2	42 ±1	28.5 ±1	21.6 ±0.9
35	18.0 ±0.7	15.0 ±0.6	10.4 ±0.4	8.6 ±0.3	18.9 ±0.7	14.5 ±0.6	15.2 ±0.6	10.1 ±0.4	20.6 ±0.8	14.3 ±0.6	58.5 ±2	57.7 ±2	67.4 ±2	44.4 ±2	33.8 ±1
55	43 ±1	36 ±1	28.1 ±1	23.7 ±0.9	43.8 ±1	34.8 ±1	36.4 ±1	25.4 ±1	47.8 ±2	34 ±1	106 ±4	106.5 ±4	128 ±5		

Table S1. Self-diffusion coefficients (*D*) for $[BMIM]^+(^1H)$ and the anions (^{19}F) in all studied ILs, at 25, 35 and 55°C.

2. Dispersions of the longitudinal relaxation rate

Figure S2. ¹H relaxation rate dispersions for [BMIM][NMsTFA], [BMIM][6cPFSI], [BMIM][NTfAc], [BMIM][TFSM], [BMIM][BETI], [BMIM][FSI], and [BMIM][B(CN)₄], recorded at 55°C. Frequencies are ¹H Larmor frequencies.

Figure S3. ¹⁹F relaxation rate dispersions for [BMIM][NMsTFA], [BMIM][6cPFSI], [BMIM][TFSM], [BMIM][NTfAc], and [BMIM][BETI], recorded at 55°C. Due to the low signal-to-noise ratio, collecting anion dispersion data was impossible for [BMIM][FSI]. Frequencies are ¹⁹F Larmor frequencies.

Figure S4. ¹H relaxation rate dispersions for [BMIM][NMsTFA] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), and homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S5. ¹⁹F relaxation rate dispersions for [BMIM][NMsTFA] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_FF), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S6. ¹H relaxation rate dispersions for [BMIM][NTfAc] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S7. ¹⁹F relaxation rate dispersions for [BMIM][NTfAc] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S8. ¹H relaxation rate dispersion for [BMIM][TFSM] and its corresponding fitting using the model given by Eq. (7), recorded at 55°C. Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S9. ¹⁹F relaxation rate dispersion for [BMIM][TFSM] and its corresponding fitting using the model given by Eq. (7), recorded 55°C. Additionally, rotational contribution (Rot),

homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S10. ¹H relaxation rate dispersions for [BMIM][BETI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational

contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S11. ¹⁹F relaxation rate dispersions for [BMIM][BETI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF)

translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S12. ¹H relaxation rate dispersions for [BMIM][FSI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational

contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S13. ¹⁹F relaxation rate dispersions for [BMIM][FSI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C. Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Due to the low signal-to-noise ratio, collecting anion dispersion data was impossible at 55°C. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S14. ¹H relaxation rate dispersions for [BMIM][6cPFSI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

Figure S15. ¹⁹F relaxation rate dispersions for [BMIM][6cPFSI] and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Additionally, rotational contribution (Rot), homonuclear (Diff_HH), and heteronuclear (Diff_HF) translational contributions are shown. Magenta dashed lines represent the fitting error. Frequencies are ¹⁹F Larmor frequencies.

Figure S16. ¹H relaxation rate dispersions for $[BMIM][B(CN)_4]$ and their corresponding fittings using the model given by Eq. (7), recorded at 25°C (a) and 55°C (b). Rotational contribution (Rot), and homonuclear (Diff_HH) translational contribution are also shown. Magenta dashed lines represent the fitting error. Frequencies are ¹H Larmor frequencies.

3. Fitting parameters for the relaxation dispersions

Parameters	[BMIM] [TFSM]		[BMIM] [NMsTFA]		[BMIM] [NTfAc]		[BMIM] [6cPFSI]		[BMIM] [BETI]		[BMIM] [FSI]		[BMIM] [B(CN) ₄]
	1H	¹⁹ F	1H	¹⁹ F	1H	¹⁹ F	1H	¹⁹ F	¹ H	¹⁹ F	ΊΗ	¹⁹ F	ΙΗ
<i>d_{HH}</i> [m] ×10 ⁻¹⁰	3.4 ±0.2		3.0 ±0.1		3.7 ±0.2		2.8 ±0.1		2.7 ±0.1		2.7 ±0.1		3.6 ±0.1
<i>d_{FF}</i> [m] ×10 ⁻¹⁰		3.6 ±0.1		3.1 ±0.2		3.7 ±0.2		3.8 ±0.2		3.9 ±0.2		4.7 ±0.2	
<i>d_{HF}</i> [m] ×10 ⁻¹⁰	2.4 ±0.1	2.0 ±0.2	2.0 ±0.1	2.0 ±0.1	3.1 ±0.2	3.1 ±0.1	2.3 ±0.1	2.4 ±0.1	2.4 ±0.1	2.5 ±0.1	2.1 ±0.1	2.3 ±0.1	
$D_H [{ m m}^2/{ m s}] imes 10^{-12}$	9.9 ±0.1	9.7 ±0.3	5.0 ±0.1	4.9 ±0.2	10.1 ±0.3	7.7 ±0.8	8.8 ±0.1	8.8 ±0.2	12.8 ±0.2	12.7 ±0.2	41 ±2	40 ±1	42 ±1
$D_F [{ m m}^2/{ m s}] imes 10^{-12}$	7.9 ±0.3	8.0 ±0.2	4.1 ±0.1	4.1 ±0.1	7.6 ±0.3	7.7 ±0.2	5.7 ±0.2	5.7 ±0.1	8.8 ±0.2	8.5 ±0.3	40 ±1	40 ±3	
$A_R [1/s^2] \times 10^8$	2.0 ±0.1	0.5 ±0.1	3.8 ±0.2	0.3 ±0.1	4.1 ±0.1	0.40 ±0.05	1.6 ±0.1	1.0 ±0.1	1.20 ±0.08	0.50 ± 0.03	$0.60 \\ \pm 0.04$	0.20 ±0.04	$0.80 \\ \pm 0.05$
$\tau_R[\mathbf{s}] \times 10^{-9}$	5.1 ±0.2	17 ±1	5.9 ±0.3	59 ±3	3.6 ±0.2	17 ±1	5.7 ±0.3	10.9 ±0.7	6.4 ±0.3	10.0 ± 0.5	3.2 ±0.1	9.8 ±0.5	3.7 ±0.2

Table S2. Parameters obtained using the model given by Eq. (7) to describe the longitudinal relaxation rate profiles for $[BMIM]^+(^{1}H)$ and the anions (^{19}F) of all studied ILs, at 25°C.

Table S3. Parameters obtained using the model given by Eq. (7) to describe the longitudinal relaxation rate profiles for $[BMIM]^+(^{1}H)$ and the anions (^{19}F) of all studied ILs, at 55°C.

	[BMIM] [TFSM]		[BMIM] [NMsTFA]		[BMIM] [NTfAc]		[BMIM] [6cPFSI]		[BMIM] [BETI]		[BMIM] [FSI]	[BMIM] [B(CN) ₄]
Parameters	¹ H	¹⁹ F	1H	¹⁹ F	ΊH	¹⁹ F	1H	¹⁹ F	ΊH	¹⁹ F	ιH	ιH
<i>d_{HH}</i> [m] ×10 ⁻¹⁰	3.4 ±0.1		3.2 ±0.1		3.5 ±0.1		2.8 ±0.1		2.8 ±0.1		2.5 ±0.1	3.3 ±0.1
<i>d_{FF}</i> [m] ×10 ⁻¹⁰		3.7 ±0.2		3.1 ±0.2		3.8 ±0.2		4.6 ±0.3		3.3 ±0.1		
<i>d_{HF}</i> [m] ×10 ⁻¹⁰	2.1 ±0.1	2.0 ±0.1	2.1 ±0.1	2.0 ±0.1	3.3 ±0.2	2.7 ±0.2	2.5 ±0.1	2.6 ±0.1	2.2 ±0.1	2.4 ±0.1	2.1 ±0.1	
$D_H [{ m m}^2/{ m s}] imes 10^{-12}$	43 ±1	43 ±1	28 ±3	23 ±3	44 ±2	35 ±3	37 ±1	37 ±2	48 ±1	48 ±1	106 ±3	127 ±2
$D_F [{ m m}^2/{ m s}] imes 10^{-12}$	36 ±1	36 ±2	24 ±2	24 ±1	34 ±3	35 ±1	25 ±1	25 ±2	34 ±1	34 ±1	106 ±4	
$A_R [1/s^2] \times 10^8$	8.8 ±0.2	$0.30 \\ \pm 0.05$	1.30 ± 0.05	0.25 ±0.02	1.2 ±0.1	0.39 ±0.07	0.7 ±0.1	1 ±0.1	0.7 ±0.1	0.18 ±0.02	$0.56 \\ \pm 0.08$	3.8 ±0.2
$ au_R$ [s] ×10 ⁻⁹	2.8 ±0.2	7.6 ±0.4	3.7 ±0.2	14 ±1	2.9 ±0.1	5.4 ±0.3	4.3 ±0.2	3.8 ±0.2	3.9 ±0.2	7.6 ±0.3	0.8 ±0.2	0.20 ±0.01