Supporting Information

Asymmetric Electronic Structures of Transition Metals for Oxygen

Evolution Reaction via Ligand-Metal Synergistic Strategy

Pai Wang¹, Kunyu Li¹, Tongwei Wu^{1,2}, Wei Ji^{1,3}, Yanning Zhang^{1,2*}

¹ Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

² Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China ³ Department of Physics, Renmin University of China, Beijing 100872, P. R. China.

*Correspondence to: yanningz@uestc.edu.cn

Fig. S1 | Schematic illustration of phen-Co@CoOOH orientation.

Fig. S2 | **Transition state search by climbing image NEB (CI-NEB) for RDS** of (a) Co@CoOOH (O₂ desorption) and (b) phen-Co@CoOOH (OOH* formation), showing the initial state (IS), transition state (TS), and final state (FS), respectively.

Fig. S3 | Structural identification diagram of Co_{ads} and Co_{S4} including (a) Co@CoOOH and (b) phen-Co@CoOOH.

Table S1 | Summaries of the bonding information for Co@CoOOH and phen-Co@CoOOH two systems. The Co-O $_{S123}$ represents the average bond length of Co_{ads}-O_{S1-S3}

		Bond Length /Å									
Complex		Co-O _{S1}	Co-O _{S2}	Co-O _{S3}	Co-O	Co-O*	Co-N ₁	Co-N ₂			
Со@СоООН	Slab	1.985	1.948	1.949	1.961						
	OH*	1.984	2.376	2.083	2.148	1.778					
	0*	2.183	2.183	1.996	2.121	1.627					
	OOH*	2.131	1.989	2.220	2.113	1.816					
phen-Co@CoOOH	Slab	1.954	2.279	1.931	2.055		1.944	1.934			
	OH*	2.007	2.114	1.986	2.036	1.809	1.930	1.924			
	O*	2.098	2.281	2.162	2.180	1.616	2.105	2.043			
	OOH*	1.983	1.971	1.960	1.971	1.830	1.976	1.932			

Table S2 | Summaries of local environments, occupation and Co-L bond information of Co_{ads} for phen-Co@CoOOH system.

Complex	Local environment	Occupation	Co-L (1) (z-axis ave) /Å	Co-L (2) (xy-axis ave) /Å	Difference (1)-(2) /Å	Jahn-Teller effect
Slab	square pyramid	$d_{xy}^2 d_{yz}^2 d_{xz}^2 d_{z2}^1 d_{x2-y2}^0$	2.279	1.941	0.34	z-in elongation
OH*	Octahedra	$d_{xy}^2 d_{yz}^2 d_{xz}^2 d_{z2}^0 d_{x2-y2}^0$	1.962	1.962	-0.00	no elongation
O*	Octahedra	$d_{xy}^2 d_{yz}^1 d_{xz}^1 d_{x2-y2}^1 d_{z2}^0$	1.949	2.102	-0.15	z-in compression
OOH*	Octahedra	$d_{xy}^2 d_{yz}^2 d_{xz}^2 d_{z2}^0 d_{x2-y2}^0$	1.901	1.963	-0.06	no elongation

Fig. S4 | **The calculated partial density of states (PDOS)** of the adsorption site Co_{ads}-3*d* orbitals for (a-c) its three OER intermediates in phen-Co@CoOOH system.

Fig. S5 | The calculated partial density of states (PDOS) and schematic diagrams of the adsorption site Co_{ads} -3*d* orbitals for (a-d) Co@CoOOH and its three OER intermediates. Spin electron occupations of *d*-orbitals are denoted as short arrows.

Fig. S6 | The calculated partial density of states (PDOS) and schematic diagrams of the adsorption site Co_{ads} -3*d* orbitals for (a-d) bpy-Co@CoOOH and its three OER intermediates. Spin electron occupations of *d*-orbitals are denoted as short arrows.

Fig. S7 | Differential charge density. The cyan and yellow colors indicate electron depletion and accumulation, respectively, with an iso-surface value of 0.006 e/Bohr³ for (a) bpy-Ni@NiOOH; (e) phen-Ni@NiOOH. Sideview of three systems to present the bond and distance information between the ligand and substrate: (b) bpy-Ni@NiOOH; (f) phen-Ni@NiOOH; (i) phen-Co@CoOOH. The Spin density, the iso-surface value is 0.035 e/Bohr³ for (c) bpy-Ni@NiOOH; (g) phen-Ni@NiOOH. The electronic arrangement of metal site for (d) bpy-Ni@NiOOH; (h) phen-Ni@NiOOH.

phen-Co@CoOOH

Fig. S8 | The calculated partial density of states (PDOS) and schematic diagrams of the adsorption site 3d orbitals for (a) CoOOH; (b) Co@CoOOH; (c) phen-Co@CoOOH; (d) bpy-Co@CoOOH; (e) bpy-Ni@NiOOH; (f) phen-Ni@NiOOH. Spin electron occupations of *d*-orbitals are denoted as short arrows.

Fig. S9 | Calculated surface charge transfer (q) and work function (Φ) at IS, TS and FS for studied electrochemical steps RDS of (a) Co@CoOOH (O₂ desorption) and (b) phen-Co@CoOOH (OOH* formation), respectively.

Fig. S10 | RDS Structure diagram for phen-Co@CoOOH using an explicit solvent model.

