Electronic Supplementary Information

Excited-State Aromaticity Reversals in Norcorrole

Peter B. Karadakov* and Edward Cummings

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

E-mail: peter.karadakov@york.ac.uk

Table of Contents

1. Gaussian Cube Files with Isotropic Shielding Values	S2
2. Additional Computational Details	S2
3. Comparison between the Vertical Excitation Energies Calculated with the TDA- B3LYP, TDA-PBE0 and TDA-ωB97X Methods	S2
4. Natural Population Analysis Charges	S3
5. Optimised Geometries and Other Computational Data	S3

1. Gaussian Cube Files with Isotropic Shielding Values

A zip archive of Gaussian cube files with isotropic shielding values for the T_1 electronic states of NiNc and H_2Nc is available as a separate download.

These files can be examined with various programs, including GaussView (see https://gaussian.com/gaussview6/) and Visual Molecular Dynamics (VMD, see https://www.ks.uiuc.edu/Research/vmd/). Both URLs were checked on 9 September 2024.

2. Additional Computational Details

All B3LYP, UB3LYP, TDA-B3LYP, TDA-PBE0 and TDA- ω B97X calculations reported in this paper were carried out using the GAUSSIAN "SuperFine" integration grid. All geometry optimizations included Grimme's D3 empirical dispersion corrections with Becke–Johnson damping, were carried out under the GAUSSIAN "VeryTight" convergence criteria, and were combined with analytical harmonic frequency calculations. All natural population analysis (NPA) calculations were carried out with the GAUSSIAN "Density(Current)" option.

Points making up the grids of isotropic magnetic shielding values and/or corresponding to NICS positions were specified in the GAUSSIAN input files as ghost atoms without basis functions (symbol "Bq"). To improve accuracy, the GAUSSIAN "CPHF(Separate)" option was used in all NMR calculations. Collecting all data for a grid requires running a number of separate GAUSSIAN calculations. To prepare the set of input files, use was made of a purpose-written program which is modified to include the GAUSSIAN route section, geometry and grid specification and for each molecule.

3. Comparison between the Vertical Excitation Energies Calculated with the TDA-B3LYP, TDA-PBE0 and TDA-ωB97X Methods

Table S1 Vertical $T_1 \leftarrow S_0$ and $S_1 \leftarrow S_0$ excitation energies of NiNc and H₂Nc calculated using TDA-B3LYP, TDA-PBE0 and TDA- ω B97X in the def2-TZVP basis set, at the S₀ B3LYP-D3(BJ)/def2-TZVP geometries (in eV).

State/VEE	TDA-	TDA-	TDA-ωB97X
	B3LYP	PBE0	
NiNc $T_1 (1 {}^{3}A_2)$	0.458	0.453	0.614
NiNc $S_1 (1 \ {}^1A_2)$	0.841	0.872	1.138
$H_2 Nc T_1 (1 {}^{3}A)$	0.607	0.605	0.852
$H_2Nc S_1 (2 \ {}^1A)$	0.999	1.039	1.448

4. Natural Population Analysis Charges

Fig. S1 Symmetry unique natural population analysis (NPA) charges (in units of *e*) at S_0 , T_1 and S_1 local minimum geometries of (a) NiNc and (b) H_2Nc , arranged in columns of four numbers each including, from bottom to top, S_0 B3LYP, T_1 UB3LYP, T_1 TDA-B3LYP and S_1 TDA-B3LYP results. (a) and (b) show the S_0 B3LYP-D3(BJ) NiNc (C_{2v}) and H_2Nc (C_2) local minimum geometries, looking at the top of each bowl.

5. Cartesian Coordinates and Other Computational Data

The geometries at which NICS were calculated include the coordinates of the respective ghost atoms. All coordinates are given in Å.

UB3LYP-D3(BJ)/def2-TZVP total energy E, $\langle S^2 \rangle$ expectation value, lowest vibrational frequency v and optimized geometry of the T₁ state of NiNc, bowl-shaped local minimum of C_{2v} symmetry.

E = -2419.767717 Ha; $\langle S^2 \rangle = 2.0071$; v = 60.4 cm⁻¹ (A₁).

Ν	-1.219094	1.327310	0.416560
Ν	-1.219094	-1.327310	0.416560
Ν	1.219094	-1.327310	0.416560
Ν	1.219094	1.327310	0.416560
С	-0.716720	2.571812	0.163128
С	-1.826151	3.397186	-0.227981
С	-2.944929	2.593613	-0.244976
С	-2.534163	1.248024	0.121896
С	-3.195626	0.000000	0.027753
С	-2.534163	-1.248024	0.121896
С	-2.944929	-2.593613	-0.244976
С	-1.826151	-3.397186	-0.227981
С	-0.716720	-2.571812	0.163128
С	0.716720	-2.571812	0.163128

С	1.826151	-3.397186	-0.227981
С	2.944929	-2.593613	-0.244976
С	2.534163	-1.248024	0.121896
С	3.195626	0.000000	0.027753
С	2.534163	1.248024	0.121896
С	2.944929	2.593613	-0.244976
С	1.826151	3.397186	-0.227981
С	0.716720	2.571812	0.163128
Н	-1.783103	4.443885	-0.481062
Н	-3.945658	2.891856	-0.514122
Н	-3.945658	-2.891856	-0.514122
Н	-1.783103	-4.443885	-0.481062
Н	1.783103	-4.443885	-0.481062
Н	3.945658	-2.891856	-0.514122
Н	3.945658	2.891856	-0.514122
Н	1.783103	4.443885	-0.481062
Ni	0.000000	0.000000	0.569127
Н	4.241224	0.000000	-0.248345
Н	-4.241224	0.000000	-0.248345
Bq	-1.783690	0.000000	0.278965
Bq	-1.604568	0.000000	-0.704861
Bq	-1.962813	0.000000	1.262792
Bq	-1.848211	2.227589	0.045725
Bq	-1.661347	1.997198	-0.909262
Bq	-2.035076	2.457980	1.000713
Bq	0.000000	1.559649	0.345700
Bq	0.000000	1.398163	-0.641175
Bq	0.000000	1.721134	1.332576

UB3LYP-D3(BJ)/def2-TZVP total energy E, $\langle S^2 \rangle$ expectation value, imaginary vibrational frequency v and optimized geometry of the T₁ state of NiNc, planar TS of D_{2h} symmetry.

E = -2419.765545 Ha; $\langle S^2 \rangle = 2.0082$; v = 44.5i cm⁻¹ (B_{3u}).

Ν	0.00000	1.318402	1.204796
Ν	0.000000	-1.318402	1.204796
Ν	0.000000	-1.318402	-1.204796
Ν	0.000000	1.318402	-1.204796
С	0.000000	2.592686	0.722096
С	0.000000	3.452301	1.877441
С	0.000000	2.642450	2.995264
С	0.000000	1.255114	2.548359
С	0.000000	0.000000	3.216379
С	0.000000	-1.255114	2.548359
С	0.000000	-2.642450	2.995264
С	0.000000	-3.452301	1.877441
С	0.000000	-2.592686	0.722096
С	0.000000	-2.592686	-0.722096
С	0.000000	-3.452301	-1.877441
С	0.000000	-2.642450	-2.995264
С	0.000000	-1.255114	-2.548359
С	0.000000	0.000000	-3.216379
С	0.000000	1.255114	-2.548359
С	0.000000	2.642450	-2.995264
С	0.000000	3.452301	-1.877441
С	0.000000	2.592686	-0.722096
Н	0.000000	4.530028	1.871529
Н	0.000000	2.973337	4.021618

Н	0.000000	-2.973337	4.021618
Н	0.000000	-4.530028	1.871529
Н	0.00000	-4.530028	-1.871529
Н	0.00000	-2.973337	-4.021618
Н	0.000000	2.973337	-4.021618
Н	0.00000	4.530028	-1.871529
Ni	0.00000	0.000000	0.000000
Н	0.00000	-0.000000	-4.297776
Н	0.000000	-0.000000	4.297776

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, lowest vibrational frequency v and optimized geometry of the T₁ state of NiNc, bowl-shaped local minimum of C_{2v} symmetry.

E = -2419.769026 Ha; v = 60.4 cm⁻¹ (A₁).

Ν	1.327376	1.219130	0.307388
Ν	-1.327376	1.219130	0.307388
Ν	-1.327376	-1.219130	0.307388
Ν	1.327376	-1.219130	0.307388
С	2.571529	0.717150	0.053978
С	3.396996	1.826857	-0.336619
С	2.593254	2.945546	-0.353282
С	1.247909	2.534691	0.013223
С	0.000000	3.195618	-0.080998
С	-1.247909	2.534691	0.013223
С	-2.593254	2.945546	-0.353282
С	-3.396996	1.826857	-0.336619
С	-2.571529	0.717150	0.053978
С	-2.571529	-0.717150	0.053978
С	-3.396996	-1.826857	-0.336619
С	-2.593254	-2.945546	-0.353282
С	-1.247909	-2.534691	0.013223
С	-0.000000	-3.195618	-0.080998
С	1.247909	-2.534691	0.013223
С	2.593254	-2.945546	-0.353282
С	3.396996	-1.826857	-0.336619
С	2.571529	-0.717150	0.053978
Н	4.443710	1.783986	-0.589621
Н	2.891513	3.946377	-0.622036
Н	-2.891513	3.946377	-0.622036
Н	-4.443710	1.783986	-0.589621
Н	-4.443710	-1.783986	-0.589621
Н	-2.891513	-3.946377	-0.622036
Н	2.891513	-3.946377	-0.622036
Н	4.443710	-1.783986	-0.589621
Ni	0.000000	0.000000	0.459641
Н	0.000000	-4.241213	-0.356710
Н	0.000000	4.241213	-0.356710

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, imaginary vibrational frequency v and optimized geometry of the T₁ state of NiNc, planar TS of D_{2h} symmetry.

E = -2419.766861 Ha; v = 44.5i cm⁻¹ (B_{3u}).

Ν	0.000000	1.318491	1.204866
Ν	0.000000	-1.318491	1.204866
Ν	0.000000	-1.318491	-1.204866

Ν	0.000000	1.318491	-1.204866
С	0.000000	2.592344	0.722541
С	0.000000	3.452002	1.878122
С	0.000000	2.641960	2.995758
С	0.000000	1.254942	2.548843
С	0.000000	0.000000	3.216337
С	0.000000	-1.254942	2.548843
С	0.000000	-2.641960	2.995758
С	0.000000	-3.452002	1.878122
С	0.000000	-2.592344	0.722541
С	0.000000	-2.592344	-0.722541
С	0.000000	-3.452002	-1.878122
С	0.000000	-2.641960	-2.995758
С	0.000000	-1.254942	-2.548843
С	0.000000	0.000000	-3.216337
С	0.000000	1.254942	-2.548843
С	0.00000	2.641960	-2.995758
С	0.000000	3.452002	-1.878122
С	0.000000	2.592344	-0.722541
Н	0.000000	4.529719	1.872328
Н	0.000000	2.972776	4.022135
Н	0.000000	-2.972776	4.022135
Н	0.000000	-4.529719	1.872328
Н	0.000000	-4.529719	-1.872328
Н	0.000000	-2.972776	-4.022135
Н	0.000000	2.972776	-4.022135
Н	0.000000	4.529719	-1.872328
Ni	0.000000	0.000000	0.000000
Н	0.000000	-0.000000	-4.297628
Н	0.000000	-0.000000	4.297628

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, lowest vibrational frequency v and optimized geometry of the S₁ state of NiNc, bowl-shaped local minimum of C_{2v} symmetry.

E = -2419.756198 Ha; v = 64.0 cm⁻¹ (A₁).

1.328231	1.220775	0.327247
-1.328231	1.220775	0.327247
-1.328231	-1.220775	0.327247
1.328231	-1.220775	0.327247
2.566108	0.712478	0.058457
3.389384	1.820789	-0.356385
2.587055	2.938884	-0.376055
1.248678	2.533888	0.013112
0.00000	3.193762	-0.088061
-1.248678	2.533888	0.013112
-2.587055	2.938884	-0.376055
-3.389384	1.820789	-0.356385
-2.566108	0.712478	0.058457
-2.566108	-0.712478	0.058457
-3.389384	-1.820789	-0.356385
-2.587055	-2.938884	-0.376055
-1.248678	-2.533888	0.013112
-0.00000	-3.193762	-0.088061
1.248678	-2.533888	0.013112
2.587055	-2.938884	-0.376055
3.389384	-1.820789	-0.356385
2.566108	-0.712478	0.058457
	1.328231 -1.328231 1.328231 2.566108 3.389384 2.587055 1.248678 0.000000 -1.248678 -2.587055 -3.389384 -2.566108 -3.389384 -2.566108 -3.389384 -2.587055 -1.248678 -0.000000 1.248678 2.587055 -3.389384 2.587055 -3.389384 -2.566108	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	4.432304	1.773013	-0.624089
Н	2.882163	3.936130	-0.661197
Н	-2.882163	3.936130	-0.661197
Н	-4.432304	1.773013	-0.624089
Н	-4.432304	-1.773013	-0.624089
Н	-2.882163	-3.936130	-0.661197
Н	2.882163	-3.936130	-0.661197
Н	4.432304	-1.773013	-0.624089
Ni	0.000000	0.000000	0.487769
Н	0.000000	-4.234815	-0.380832
Н	0.000000	4.234815	-0.380832

TDAB3LYP-D3(BJ)/def2-TZVP total energy E, imaginary vibrational frequency v and optimized geometry of the S₁ state of NiNc, planar TS of D_{2h} symmetry.

E = -2419.766861 Ha; v = 47.4i cm⁻¹ (B_{3u}).

Ν	0.000000	1.318154	1.204446
Ν	0.000000	-1.318154	1.204446
Ν	0.000000	-1.318154	-1.204446
Ν	0.00000	1.318154	-1.204446
С	0.00000	2.589692	0.718236
С	0.000000	3.451156	1.878953
С	0.00000	2.642114	2.995971
С	0.00000	1.256715	2.549829
С	0.00000	0.000000	3.217392
С	0.00000	-1.256715	2.549829
С	0.00000	-2.642114	2.995971
С	0.000000	-3.451156	1.878953
С	0.000000	-2.589692	0.718236
С	0.00000	-2.589692	-0.718236
С	0.000000	-3.451156	-1.878953
С	0.00000	-2.642114	-2.995971
С	0.00000	-1.256715	-2.549829
С	0.000000	0.000000	-3.217392
С	0.000000	1.256715	-2.549829
С	0.00000	2.642114	-2.995971
С	0.00000	3.451156	-1.878953
С	0.000000	2.589692	-0.718236
Н	0.000000	4.528972	1.873171
Н	0.00000	2.973747	4.022102
Н	0.000000	-2.973747	4.022102
Н	0.000000	-4.528972	1.873171
Н	0.00000	-4.528972	-1.873171
Н	0.00000	-2.973747	-4.022102
Н	0.000000	2.973747	-4.022102
Н	0.000000	4.528972	-1.873171
Ni	0.000000	0.000000	0.000000
Н	0.000000	-0.000000	-4.298777
Н	0.000000	-0.00000	4.298777

UB3LYP-D3(BJ)/def2-TZVP total energy E, $\langle S^2 \rangle$ expectation value, lowest vibrational frequency v and optimized geometry of the T₁ state of H₂Nc, bowl-shaped local minimum of C_2 symmetry.

E = -912.467305 Ha; $\langle S^2 \rangle = 2.0053$; v = 80.9 cm⁻¹ (A).

Ν	1.213975	1.263100	0.579918
Ν	-1.335866	1.316304	0.621991
Ν	-1.213975	-1.263100	0.579918
Ν	1.335866	-1.316304	0.621991
С	2.419105	0.741377	0.258109
С	3.265849	1.783777	-0.281660
С	2.501653	2.917790	-0.321734
С	1.179294	2.554943	0.178639
С	-0.047179	3.252014	0.052003
С	-1.290748	2.599235	0.180095
С	-2.607051	2.868297	-0.336520
С	-3.328331	1.688949	-0.294357
С	-2.483420	0.678984	0.263046
С	-2.419105	-0.741377	0.258109
С	-3.265849	-1.783777	-0.281660
С	-2.501653	-2.917790	-0.321734
С	-1.179294	-2.554943	0.178639
С	0.047179	-3.252014	0.052003
С	1.290748	-2.599235	0.180095
С	2.607051	-2.868297	-0.336520
С	3.328331	-1.688949	-0.294357
С	2.483420	-0.678984	0.263046
Н	4.284026	1.671685	-0.618411
Н	2.793785	3.885783	-0.698172
Н	-2.938706	3.810673	-0.740808
Н	-4.330869	1.536120	-0.657928
Н	-4.284026	-1.671685	-0.618411
Н	-2.793785	-3.885783	-0.698172
Н	2.938706	-3.810673	-0.740808
Н	4.330869	-1.536120	-0.657928
Н	0.033983	-4.262774	-0.331164
Н	-0.033983	4.262774	-0.331164
Н	0.445534	-0.857975	0.835538
Н	-0.445534	0.857975	0.835538
Bq	2.115975	1.852197	0.082654
Bq	1.806861	1.603621	-0.835310
Bq	2.425089	2.100773	1.000619
Bq	1.242061	0.001531	0.565690
Bq	1.022487	-0.045432	-0.408775
Bq	1.461635	0.048495	1.540155
Вq	2.209083	-1.830354	0.086851
Вq	1.861888	-1.578476	-0.816483
Bq	2.556279	-2.082232	0.990185
Bq	0.121010	-1.973928	0.408031
Вq	0.138869	-1.667275	-0.543623
Bq	0.103150	-2.280582	1.359684

UB3LYP-D3(BJ)/def2-TZVP total energy E, $\langle S^2 \rangle$ expectation value, imaginary vibrational frequency v and optimized geometry of the T₁ state of H₂Nc, TS of C_i symmetry.

E = -912.462284 Ha; $\langle S^2 \rangle = 2.0058$; v = 48.0i cm⁻¹ (A_u).

Ν	0.003648	1.187209	1.211260
Ν	0.285122	-1.294875	1.263554
Ν	-0.003648	-1.187209	-1.211260
Ν	-0.285122	1.294875	-1.263554
С	-0.051397	2.450019	0.741208
С	-0.041901	3.360216	1.867267

С	0.000529	2.582862	2.997551
С	0.034213	1.188785	2.559525
С	0.076670	-0.039756	3.274286
С	0.135417	-1.287309	2.605361
С	-0.034532	-2.677740	2.955819
С	-0.038262	-3.418580	1.783995
С	0.130409	-2.510685	0.687734
С	0.051397	-2.450019	-0.741208
С	0.041901	-3.360216	-1.867267
С	-0.000529	-2.582862	-2.997551
С	-0.034213	-1.188785	-2.559525
С	-0.076670	0.039756	-3.274286
С	-0.135417	1.287309	-2.605361
С	0.034532	2.677740	-2.955819
С	0.038262	3.418580	-1.783995
С	-0.130409	2.510685	-0.687734
Н	-0.084197	4.436905	1.825075
Н	0.008984	2.931589	4.018694
Н	-0.169088	-3.062461	3.953589
Н	-0.175934	-4.484097	1.704111
Н	0.084197	-4.436905	-1.825075
Н	-0.008984	-2.931589	-4.018694
Н	0.169088	3.062461	-3.953589
Н	0.175934	4.484097	-1.704111
Н	-0.023488	0.025491	-4.353693
Н	0.023488	-0.025491	4.353693
Н	-0.312598	0.395511	-0.775706
Н	0.312598	-0.395511	0.775706

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, lowest vibrational frequency v and optimized geometry of the T₁ state of H₂Nc, bowl-shaped local minimum of C_2 symmetry.

E = -912.468873 Ha; v = 81.0 cm⁻¹ (A).

-1.236630	1.241170	-0.521509
1.312357	1.339751	-0.561370
1.236630	-1.241170	-0.521509
-1.312357	-1.339751	-0.561370
-2.430704	0.699240	-0.198618
-3.297033	1.728262	0.339849
-2.554054	2.875083	0.378158
-1.223970	2.535263	-0.120887
-0.012487	3.252625	0.006588
1.244559	2.621008	-0.119539
2.554054	2.913501	0.398136
3.297343	1.746538	0.355422
2.472018	0.722891	-0.203263
2.430704	-0.699240	-0.198618
3.297033	-1.728262	0.339849
2.554054	-2.875083	0.378158
1.223970	-2.535263	-0.120887
0.012487	-3.252625	0.006588
-1.244559	-2.621008	-0.119539
-2.554054	-2.913501	0.398136
-3.297343	-1.746538	0.355422
-2.472018	-0.722891	-0.203263
-4.313033	1.597984	0.676634
-2.863476	3.838298	0.753028
	-1.236630 1.312357 1.236630 -1.312357 -2.430704 -3.297033 -2.554054 -1.223970 -0.012487 1.244559 2.554054 3.297343 2.472018 2.430704 3.297033 2.554054 1.223970 0.012487 -1.244559 -2.554054 -3.297343 -2.472018 -3.297343 -2.472018 -3.297343 -2.472018 -3.297343 -2.863476	-1.2366301.2411701.3123571.3397511.236630-1.241170-1.312357-1.339751-2.4307040.699240-3.2970331.728262-2.5540542.875083-1.2239702.535263-0.0124873.2526251.2445592.6210082.5540542.9135013.2973431.7465382.4720180.7228912.430704-0.6992403.297033-1.7282622.554054-2.8750831.223970-2.5352630.012487-3.252625-1.244559-2.621008-2.554054-2.913501-3.297343-1.746538-2.472018-0.722891-4.3130331.597984-2.8634763.838298

Н	2.868344	3.861245	0.803665
Н	4.302305	1.612065	0.719550
Н	4.313033	-1.597984	0.676634
Н	2.863476	-3.838298	0.753028
Н	-2.868344	-3.861245	0.803665
Н	-4.302305	-1.612065	0.719550
Н	0.043524	-4.263271	0.388657
Н	-0.043524	4.263271	0.388657
Н	-0.431226	-0.865355	-0.776461
Н	0.431226	0.865355	-0.776461

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, imaginary vibrational frequency v and optimized geometry of the T₁ state of H₂Nc, TS of C_i symmetry.

E	= -912.4638	83 Ha; $v = 4^{\circ}$	$7.7i \text{ cm}^{-1} (\text{A}_{\text{u}}).$
N	0.007408	1.187788	1.210812
Ν	0.284361	-1.295178	1.263524
Ν	-0.007408	-1.187788	-1.210812
Ν	-0.284361	1.295178	-1.263524
С	-0.050027	2.449297	0.741893
С	-0.043198	3.359976	1.869213
С	-0.000352	2.582983	2.998682
С	0.036119	1.188253	2.560547
С	0.078491	-0.038105	3.274214
С	0.135388	-1.287434	2.605098
С	-0.035164	-2.676492	2.956168
С	-0.039259	-3.418402	1.783886
С	0.129748	-2.511567	0.688143
С	0.050027	-2.449297	-0.741893
С	0.043198	-3.359976	-1.869213
С	0.000352	-2.582983	-2.998682
С	-0.036119	-1.188253	-2.560547
С	-0.078491	0.038105	-3.274214
С	-0.135388	1.287434	-2.605098
С	0.035164	2.676492	-2.956168
С	0.039259	3.418402	-1.783886
С	-0.129748	2.511567	-0.688143
Н	-0.087547	4.436579	1.826922
Н	0.006279	2.931386	4.019944
Н	-0.169691	-3.060873	3.954051
Н	-0.177617	-4.483879	1.704762
Н	0.087547	-4.436579	-1.826922
Н	-0.006279	-2.931386	-4.019944
Н	0.169691	3.060873	-3.954051
Н	0.177617	4.483879	-1.704762
Н	-0.026954	0.023898	-4.353571
Н	0.026954	-0.023898	4.353571
Н	-0.313499	0.396446	-0.775129
Н	0.313499	-0.396446	0.775129

TDA-B3LYP-D3(BJ)/def2-TZVP total energy E, lowest vibrational frequency v and optimized geometry of the S₁ state of H₂Nc, bowl-shaped local minimum of C_2 symmetry.

E = -912.457951 Ha; v = 85.5 cm⁻¹ (A).

N -1.246011 1.256065 -0.562942

Ν	1.315694	1.348056	-0.625646
Ν	1.246011	-1.256065	-0.562942
Ν	-1.315694	-1.348056	-0.625646
С	-2.439514	0.684711	-0.213395
С	-3.286906	1.691528	0.386972
С	-2.542644	2.837504	0.444495
С	-1.232198	2.516978	-0.113101
С	-0.000184	3.247011	0.013429
С	1.232198	2.620431	-0.138384
С	2.547569	2.902652	0.404681
С	3.280771	1.744971	0.364044
С	2.458510	0.717264	-0.226852
С	2.439514	-0.684711	-0.213395
С	3.286906	-1.691528	0.386972
С	2.542644	-2.837504	0.444495
С	1.232198	-2.516978	-0.113101
С	0.000184	-3.247011	0.013429
С	-1.232198	-2.620431	-0.138384
С	-2.547569	-2.902652	0.404681
С	-3.280771	-1.744971	0.364044
С	-2.458510	-0.717264	-0.226852
Н	-4.291042	1.547371	0.752549
Н	-2.837443	3.784686	0.868468
Н	2.853891	3.844933	0.829310
Н	4.276660	1.599425	0.748909
Н	4.291042	-1.547371	0.752549
Н	2.837443	-3.784686	0.868468
Н	-2.853891	-3.844933	0.829310
Н	-4.276660	-1.599425	0.748909
Н	0.028681	-4.243283	0.430979
Н	-0.028681	4.243283	0.430979
Н	-0.436326	-0.874213	-0.841434
Н	0.436326	0.874213	-0.841434

TDAB3LYP-D3(BJ)/def2-TZVP total energy E, imaginary vibrational frequency v and optimized geometry of the S₁ state of NiNc, TS of C_i symmetry.

E = -912.450687 Ha; v = 47.1i cm⁻¹ (A_u).

Ν	-0.059699	1.181339	1.217849
Ν	0.351303	-1.290515	1.261968
Ν	0.059699	-1.181339	-1.217849
Ν	-0.351303	1.290515	-1.261968
С	-0.087785	2.454012	0.733594
С	-0.030038	3.362087	1.855436
С	0.018380	2.584199	2.989275
С	0.009456	1.195164	2.552534
С	0.053980	-0.057022	3.274590
С	0.153450	-1.279588	2.606611
С	-0.032581	-2.679386	2.948738
С	-0.023599	-3.412227	1.785278
С	0.171919	-2.497507	0.678807
С	0.087785	-2.454012	-0.733594
С	0.030038	-3.362087	-1.855436
С	-0.018380	-2.584199	-2.989275
С	-0.009456	-1.195164	-2.552534
С	-0.053980	0.057022	-3.274590
С	-0.153450	1.279588	-2.606611

С	0.032581	2.679386	-2.948738
С	0.023599	3.412227	-1.785278
С	-0.171919	2.497507	-0.678807
Н	-0.043577	4.439685	1.813971
Н	0.062327	2.935440	4.008585
Н	-0.192416	-3.063214	3.943384
Н	-0.172071	-4.475925	1.698598
Н	0.043577	-4.439685	-1.813971
Н	-0.062327	-2.935440	-4.008585
Н	0.192416	3.063214	-3.943384
Н	0.172071	4.475925	-1.698598
Н	0.036452	0.048371	-4.351459
Н	-0.036452	-0.048371	4.351459
Н	-0.356619	0.395340	-0.770690
Н	0.356619	-0.395340	0.770690