Electronic Supplementary Information

Ab initio electronic structures and total internal partition sums of $FeH^{+/2+}$

Isuru R. Ariyarathna*, Jeffery A. Leiding, Amanda J. Neukirch, and Mark C. Zammit

Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA

*isuru@lanl.gov

Contents

Figure S1 Molecular orbitals of FeH+	Page S2
Figure S2 Total μ of FeH ⁺ (1 ⁵ Δ) under various functionals of DFT	Page S2
Table S1 Total μ of FeH ⁺ (1 ⁵ Δ) under DFT and % DFT errors compared to CCSD(T) μ	Page S3
Table S2 Total internal partition function sum (TIPS) fit coefficients of FeH ⁺	Page S3
Table S3 Total internal partition function sum (TIPS) fit coefficients of FeH ²⁺	Page S4
Table S4 Absolute energies of the electronic states of the FeH ⁺	Page S5-S6
Table S5 Absolute energies and the spectroscopic parameters of FeH ⁺ at CAS(8,7)	Page S6
Table S6 Absolute energies of the electronic states of the FeH ²⁺	Page S7

Figure S1. Select stage average CASSCF molecular orbitals of FeH⁺ under an isovalue of 0.02 e/Å³. The Fe (left atom) and H (right atom) of each orbital plot are shown in orange and gray colors, respectively. The 90° and 45° rotations of $3\pi_y$ and $1\delta_{x^2-y^2}$ respectively yield $3\pi_x$ and $1\delta_{xy}$ orbitals. Avogadro visualization software was utilized to plot molecular orbitals.^{1, 2} Molecular orbitals of FeH²⁺ are qualitatively similar.

Figure S2. Total μ (D) of FeH⁺ (1⁵ Δ) under various of DFT functionals at the AQZ basis set (blue dots). Each class of density functional is separated with vertical gray dashed lines (i.e., left to right: GGA, MGGA, global GGA hybrid, MGGA hybrid, RSH, and DH). The blue horizontal line represents the AQZ-CCSD(T) total μ of FeH (a⁶ Δ). The % DFT errors are calculated with respect to the AQZ-CCSD(T) total μ .

Family of functional	DFA	μ	% DFT error of µ
GGA	BP86	1.73	-30.9
	BLYP	1.70	-32.0
	PBE	1.74	-30.4
MGGA	TPSS	1.96	-21.6
	MN15-L	2.70	8.2
Global GGA Hybrid	B3LYP	2.09	-16.3
	B3P86	2.12	-15.2
	B3PW91	2.16	-13.7
	PBE0	2.25	-9.8
MGGA Hybrid	TPSSh	2.15	-14.1
	M06-2X	2.53	1.0
	MN15	2.21	-11.4
RSH	LRC-wPBE	2.43	-2.9
	CAM-B3LYP	2.28	-8.9
	ωB97X	2.57	2.6
DH	PBE0-DH	2.62	4.7
	DSDPBEP86	2.81	12.5

Table S1. Total μ (D) of FeH⁺ (1⁵ Δ) under various of DFT functionals at the AQZ basis set and % DFT errors of μ with respect to the AQZ-CCSD(T) μ .

Table S2. The FeH⁺ total internal partition function sum (TIPS) fit coefficients.

TIPS fit coefficient	<i>N</i> = 17
<i>a</i> ₀	71.50708320
<i>a</i> ₁	4.80121537
a_2	-2.27804388
<i>a</i> ₃	0.07133026
<i>a</i> ₄	1.63147380
<i>a</i> ₅	-1.06112301
<i>a</i> ₆	-3.13026361
<i>a</i> ₇	3.63199386
a_8	4.53048612
a 9	-8.22442788
a_{10}	-1.54371893
a_{11}	9.43631754
a_{12}	-4.29681202
<i>a</i> ₁₃	-3.12628672
<i>a</i> ₁₄	3.79299826
a_{15}	-1.40973241
a_{16}	0.18795683

TIPS fit coefficient	<i>N</i> = 19
a_0	34.63325950
<i>a</i> ₁	5.53542111
a_2	-1.53688247
a_3	-1.37361292
<i>Q</i> _4	-0.47721383
a_5	0.58839798
a_6	2.34014731
<i>a</i> ₇	1.35141182
a_8	-5.99708788
a 9	-2.47014607
a_{10}	11.17570580
<i>a</i> ₁₁	-1.82504878
a_{12}	-10.85150190
<i>a</i> ₁₃	7.88059971
<i>a</i> ₁₄	1.92195008
a_{15}	-4.95239797
<i>a</i> ₁₆	2.63275208
<i>a</i> ₁₇	-0.63054239
<i>a</i> ₁₈	0.05934423

Table S3. The FeH²⁺ total internal partition function sum (TIPS) fit coefficients.

State	Level of theory	Absolute energy				
Y5A	ΔΩ7-MRCI	-1262 963065				
$\Lambda^{\circ}\Delta$	⊼Q2-MINUI ΔΩ7_MDCI⊥Ω	-1202.903003				
	ΔQ2-ΜΙΛΟΙ+Ų ΔΩ7. DK_MDCI	-1202.700437 _1771 Q12070				
	⊼ℚℰⅅK℠℻ℾ	12/1.0437/0 -1271 Q10122				
Λ5Π		-12/ 1.047433				
AJII	AUT-MIKUI	-1202.737303 1262.065164				
	AQZ-MKUI+Q	-1202.705104				
	AQL-DK-MIKUI	-14/1.0414/4 1271.047125				
	AUT-DK-MKUI+Q	-12/1.04/125				
$R_{2}\Sigma_{+}$	AUZ-MKU	-1262.943011				
	AUZ-MKUI+U	-1262.949144				
	AQZ-DK-MKUI	-12/1.82/108				
	AQZ-DK-MRCI+Q	-12/1.833302				
a³Σ-	AQZ-MRCI	-1262.918317				
	AQZ-MRCI+Q	-1262.922398				
	AQZ-DK-MRCI	-1271.794089				
	AQZ-DK-MRCI+Q	-1271.798299				
b³Φ	AQZ-MRCI	-1262.913695				
	AQZ-MRCI+Q	-1262.917542				
	AQZ-DK-MRCI	-1271.789777				
	AQZ-DK-MRCI+Q	-1271.793748				
c³∏	AQZ-MRCI	-1262.908864				
	AQZ-MRCI+Q	-1262.912771				
	AQZ-DK-MRCI	-1271.785418				
	AQZ-DK-MRCI+Q	-1271.789462				
d ³	AQZ-MRCI	-1262.894435				
	AQZ-MRCI+Q	-1262.898117				
	AQZ-DK-MRCI	-1271.772146				
	AQZ-DK-MRCI+Q	-1271.775985				
1 ⁵ Σ-	AQZ-MRCI	-1262.881440				
	AQZ-MRCI+Q	-1262.884429				
1 ⁵ Φ	AQZ-MRCI	-1262.880513				
	AQZ-MRCI+Q	-1262.883387				
2 ⁵ Π	AQZ-MRCI	-1262.879304				
	AQZ-MRCI+Q	-1262.882227				
2 ⁵ Δ	AQZ-MRCI	-1262.877123				
	AQZ-MRCI+Q	-1262.879955				
1 ³ H	AQZ-MRCI	-1262.870627				
	AQZ-MRCI+O	-1262.874930				
2 ³ Π	AOZ-MRCI	-1262.869245				
- **	AOZ-MRCI+O	-1262.872765				
<u>11</u> Γ	AOZ-MRCI	-1262.866401				
± +	AOZ-MRCI+O	-1262.870043				
<u>11Σ</u> -	AOZ-MRCI	-1262.865878				
1 4	AOZ-MRCI+O	-1262 869487				
13Г	ΔΩ7-ΜΡΩΙ	-1262.864.987				
1-1	AQ2-MINUI A07-MRCI±0	-1202.004707				
<u> </u>	<u>אעז-אותטודע</u> ג <u>חק</u> אסרו	-1202.000477				
$L^{3}\Delta$	ΑΥΔ-ΜΙΛΟΙ ΔΩ7-ΜΡΟΙ±Ω	-1202.004724				
<u> </u>		1262 064041				
Z3Z-	AUZ-MKUI	-1202.804041				
	AUZ-MKUI+Q	-1202.80//01				
3311	AQZ-MKCI	-1262.860868				
	AQZ-MRCI+Q	-1262.864533				
3 ³ Σ-	AQZ-MRCI	-1262.859958				
	AQZ-MRCI+Q	-1262.864033				
$1^{1}\Pi$	AQZ-MRCI	-1262.858369				
	AQZ-MRCI+Q	-1262.861936				
2 ³ Φ	AQZ-MRCI	-1262.855896				

Table S4. MRCI and MRCI+Q absolute energies of FeH+ (Hartree).

	AQZ-MRCI+Q	-1262.859629
3³∆	AQZ-MRCI	-1262.851196
	AQZ-MRCI+Q	-1262.855018
3 ⁵ ∆	AQZ-MRCI	-1262.850320
	AQZ-MRCI+Q	-1262.853786
3 ⁵ П	AQZ-MRCI	-1262.850093
	AQZ-MRCI+Q	-1262.853493
2 ⁵ Σ+	AQZ-MRCI	-1262.849440
	AQZ-MRCI+Q	-1262.852711
1 ¹ Φ	AQZ-MRCI	-1262.845280
	AQZ-MRCI+Q	-1262.848893

Table S5. Absolute energy (Hartree), adiabatic dissociation energy with respect to the Fe⁺(⁶D)+H(²S) fragments D_e (kcal/mol), bond length r_e (Å), excitation energy T_e (cm⁻¹), harmonic vibrational frequency ω_e (cm⁻¹), anharmonicity $\omega_e x_e$ (cm⁻¹), equilibrium rotational constant B_e (cm⁻¹), anharmonic correction to the rotational constant α_e (cm⁻¹), and centrifugal distortion constant \overline{D}_e (cm⁻¹) at the equilibrium distance of the 4 low-lying electronic states of FeH⁺ under the CAS(8,7).

State	Level of theory	Absolute energy	De	re	Te	ωe	ωeXe	Be	αe	$\overline{\mathrm{D}}_{\mathrm{e}}$
X⁵∆	AQZ-DK-MRCI	-1271.832705	49.73	1.587		1843	39.7	6.773	0.2060	0.000376
	AQZ-DK-MRCI+Q	-1271.844056	53.14	1.578		1905	44.9	6.842	0.1939	0.000371
А⁵П	AQZ-DK-MRCI	-1271.829976	48.02	1.563	599	1827	48.5	6.916	0.2481	0.000399
	AQZ-DK-MRCI+Q	-1271.841371	51.45	1.558	589	1906	66.3	6.999	0.2329	0.000409
$B^5\Sigma^+$	AQZ-DK-MRCI	-1271.816596	39.62	1.630	3536	1640	25.8	6.420	0.2364	0.000382
	AQZ-DK-MRCI+Q	-1271.828277	43.23	1.616	3463	1734	35.3	6.539	0.2548	0.000371
a³Σ-	AQZ-DK-MRCI	-1271.771173	11.12	1.458	13505	2199	36.1	7.981	0.1305	0.000415
	AQZ-DK-MRCI+Q	-1271.785507	16.40	1.443	12850	2257	37.4	8.137	0.1279	0.000392

State	Level of theory	Absolute energy
4Π	AQZ-MRCI	-1262.336777
	AQZ-MRCI+Q	-1262.337981
	AQZ-DK-MRCI	-1271.212750
	AQZ-DK-MRCI+Q	-1271.213988
$^{4}\Delta$	AQZ-MRCI	-1262.336163
	AQZ-MRCI+Q	-1262.337271
	AQZ-DK-MRCI	-1271.211928
	AQZ-DK-MRCI+Q	-1271.213062
6Σ+	AQZ-MRCI	-1262.332069
	AQZ-MRCI+Q	-1262.333232
	AQZ-DK-MRCI	-1271.209770
	AQZ-DK-MRCI+Q	-1271.211012
<u>6Д</u>	AQZ-MRCI	-1262.330509
	AQZ-MRCI+Q	-1262.331466
	AQZ-DK-MRCI	-1271.206647
	AQZ-DK-MRCI+Q	-1271.207626
<u>6</u> П	AQZ-MRCI	-1262.329312
	AQZ-MRCI+Q	-1262.330293
	AQZ-DK-MRCI	-1271.205575
	AQZ-DK-MRCI+Q	-1271.206589
4 <u>Σ</u> +	AQZ-MRCI	-1262.322967
	AQZ-MRCI+Q	-1262.323980
	AQZ-DK-MRCI	-1271.198810
	AQZ-DK-MRCI+Q	-1271.199861

Table S6. MRCI and MRCI+Q absolute energies of FeH²⁺ (Hartree).

References

¹ M. D. Hanwell *et al.*, J Cheminform **4** (2012) 17.

² Avogadro: an open-source molecular builder and visualization tool, Version 1.2.0.