## Supplementary Information for

## Alloying two-dimensional VSi<sub>2</sub>N<sub>4</sub> to realize ideal half-metal towards

## spintronics

Jin-Lan Sun<sup>†</sup>, Wei-Kang Zhang<sup>†</sup>, Mi-Mi Dong, Zong-Liang Li, Chuan-Kui Wang\* and

Xiao-Xiao Fu\*

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

These authors contributed equally to this work.

E-mail: ckwang@sdnu.edu.cn, fuxiaoxiao@sdnu.edu.cn



Fig. S1. The zero-bias transmission spectra of the Sc-doped  $VSi_2N_4$  device with the central region containing 3, 4, and 5 units with parallel magnetization configuration.

Table S1. Total energy  $E_{\text{total}}$  (eV) for the pure and Sc-doped VSi<sub>2</sub>N<sub>4</sub> systems with ferromagnetic (FM) and antiferromagnetic (AFM) configurations

| $E_{\text{total}}\left(\text{eV}\right)$ | FM           | AFM1         | AFM2         | AFM3         |
|------------------------------------------|--------------|--------------|--------------|--------------|
| pure                                     | -13491.87306 | -13491.87305 | -13491.87304 |              |
| Sc-doped                                 | -51199.41565 | -51199.41565 | -51199.41565 | -51199.41565 |



Fig. S2. Ferromagnetic (FM) and antiferromagnetic (AFM) configurations of (a) the pure  $VSi_2N_4$  system and (b) the Sc-doped  $VSi_2N_4$  system. All the V atoms in (b) are in spin-up magnetic order.

Table S2. The formation energy  $E_{\text{form}}$  (eV), magnetic moment  $M(\mu_B)$ , and band gap  $E_{\text{gap}}$  (eV) of the transition metal atom (Sc-Ni, Y-Mo) doped VSi<sub>2</sub>N<sub>4</sub> system, in comparison of those with U correction (U=3.0 eV).

| System | $E_{\rm form}$ | М    | $E_{\rm gap\_up}$ | $E_{\rm gap\_down}$ | M $(+U)$ | $E_{\text{gap\_up}}$<br>(+U) | $E_{\text{gap}\_\text{down}}$ $(+U)$ |
|--------|----------------|------|-------------------|---------------------|----------|------------------------------|--------------------------------------|
| pure   |                | 0.98 | 0.00              | 1.74                | 1.00     | 0.05                         | 2.00                                 |
| Sc     | -3.08          | 2.00 | 0.00              | 1.32                | 2.00     | 0.00                         | 1.92                                 |
| Ti     | -5.20          | 3.00 | 0.21              | 1.68                | 3.00     | 1.54                         | 1.94                                 |
| Cr     | -2.39          | 2.15 | 0.00              | 0.00                | 5.00     | 0.00                         | 2.32                                 |
| Mn     | -1.80          | 0.00 | 0.23              | 0.23                | 6.00     | 1.24                         | 2.23                                 |
| Fe     | -2.37          | 0.00 | 0.00              | 0.00                | 7.00     | 0.00                         | 1.83                                 |
| Co     | -1.76          | 0.00 | 0.00              | 0.00                | 4.00     | 0.94                         | 0.00                                 |
| Ni     | 0.08           | 1.20 | 0.00              | 0.00                | 3.00     | 0.73                         | 1.23                                 |
| Y      | -1.92          | 2.00 | 0.00              | 0.90                | 2.00     | 0.00                         | 1.61                                 |
| Zr     | -6.25          | 3.00 | 0.30              | 1.50                | 3.00     | 1.25                         | 1.72                                 |
| Nb     | -6.95          | 3.70 | 0.00              | 0.00                | 4.00     | 0.29                         | 1.89                                 |
| Мо     | -5.40          | 1.93 | 0.00              | 0.00                | 3.43     | 0.00                         | 0.00                                 |



Fig. S3. (a) The phonon spectra and (b) AIMD simulations of the Sc-doped  $VSi_2N_4$  system. The molecular dynamics at 300 K for 3 ps with 1 fs time step: total energy and structure over time.



Fig. S4. The band structures of the transition metal atoms (Cr, Mn, Fe, Co, Nb, and Mo) doped  $VSi_2N_4$  monolayers.



Fig. S5. The band structures of (a) the pure  $VSi_2N_4$  and (b-l) the transition metal atom (Sc-Ni, Y-Mo) doped  $VSi_2N_4$  systems within the Hubbard U approach (U=3.0 eV). Spin-up and spin-down bands are denoted by the black and red lines, respectively.

Table S3. Spin bandgap ( $E_{gap\_up}$  and  $E_{gap\_down}$ ) of the Sc-doped system with one Sc atom doped in 2\*2, 3\*3, and 4\*4 supercell.

| Sc-doped system                          | 2*2  | 3*3  | 4*4  |
|------------------------------------------|------|------|------|
| $E_{\text{gap\_up}}(\text{eV})$          | 0.00 | 0.00 | 0.00 |
| $E_{\text{gap}\_\text{down}}(\text{eV})$ | 1.32 | 1.29 | 1.33 |



Fig. S6. The energy band of the Sc-doped system with one Sc atom doped in (a) 2\*2, (b) 3\*3, and (c) 4\*4 supercell.



Fig. S7. Spin electron density of (a) the pure  $VSi_2N_4$  system and the Sc-doped  $VSi_2N_4$  system with (b) 2\*2, (c) 3\*3, and (d) 4\*4 supercell. The pink color shows the up-spin electrons. The isovalue is 0.05.