Supplementary materials

Multi-level chiral edge states in Janus $M_2XS_2Se_2$ (M = V, Ti; X = W, Mo) monolayers with high Curie temperature and sizable nontrivial topological gaps

Li Deng^a, Xiang Yin^a, Yanzhao Wu^a, Junwei Tong^b, Gaowu Qin^a and Xianmin Zhang^{a*} ^aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China ^bDepartment of Physics, Freie Universität Berlin, Berlin, 14195, Germany

Using $Ti_2WS_2Se_2$ monolayer as an example, the convergence tests of k-points and cutoff energy are conducted, as shown in Figure S1. It can be found that as the k-points and cutoff energy reaching $15 \times 15 \times 1$ and 500 eV, the energy of $Ti_2WS_2Se_2$ monolayer become the lowest and stable. Therefore, the k-points and cutoff energy are set as $15 \times 15 \times 1$ and 500 eV, respectively.

Figure S1. Convergence tests of (a) k-points and (b) cutoff energy for the Ti₂WS₂Se₂ monolayer.

Table S1. Lattice constant *a*, bond length *d*, monolayer thickness *h*, cohesive energy E_{coh} , and formation energy E_{form} of the M₂XS₂Se₂ (M = V, Ti; X = W, Mo) monolayers.

System	a (Å)	<i>d</i> _{M-S} (Å)	d _{M-Se} (Å)	<i>d</i> _{X-S} (Å)	d _{X-Se} (Å)	h (Å)	E _{coh} (eV/atom)	E _{form} (eV/atom)
$V_2WS_2Se_2$	5.83	2.42	2.55	2.30	2.45	2.74	4.93	-0.65
$V_2MoS_2Se_2$	5.82	2.40	2.53	2.32	2.46	2.71	3.56	-0.71
$Ti_2WS_2Se_2$	5.79	2.44	2.57	2.33	2.48	2.88	4.98	-0.67
Ti ₂ MoS ₂ Se	5.80	2.42	2.55	2.37	2.50	2.80	4.63	

Figure S2. Electron localization function of V₂WS₂Se₂ monolayer in the ⁽¹¹⁰⁾ plane along V-S (upper)

and W-Se (lower) bonds.

Figure S3. Phonon spectrum of the $Ti_2MoS_2Se_2$ monolayer.

Figure S4. Spin density distribution of FM configuration and schematic of exchange parameters $(J_1, J_2 \text{ and } J_2)$ for the M₂XS₂Se₂ (M = V, Ti; X = W, Mo) monolayers. Yellow iso-surfaces (0.03 e/bohr³) represent the spin-up densities.

Table S2. Exchange energy $(\Delta E_{ex} = E_{AFM1/AFM2/AFM3} - E_{FM})$ of the V₂WS₂Se₂, V₂MoS₂Se₂, and Ti₂WS₂Se₂ monolayers.

System	E _{AMF1} - E _{FM} (meV/2 × 2 supercell)	E _{AMF2} - E _{FM} (meV/2 × 2 supercell)	E _{AMF3} - E _{FM} (meV/2 × 2 supercell)
$V_2WS_2Se_2$	1889.58	1853.46	1746.06
$V_2MoS_2Se_2$	2657.58	2087.37	2167.10
$Ti_2WS_2Se_2$	653.68	752.97	830.93

Figure S5. Atom-resolved MAE of the V2WS2Se2, V2MoS2Se2, and Ti2WS2Se2 monolayers.

Table S3. Exchange parameters of the V₂WS₂Se₂, V₂MoS₂Se₂, and Ti₂WS₂Se₂ monolayers.

System	J_1 (meV)	<i>J</i> ₂ (meV)	<i>J</i> ₃ (meV)
$V_2WS_2Se_2$	26.20	22.30	2.98
$V_2MoS_2Se_2$	36.91	23.29	-2.21
$Ti_2WS_2Se_2$	20.43	26.63	4.87

Figure S6. Three-dimensional band structures of the (a) $V_2WS_2Se_2$, (b) $V_2MoS_2Se_2$, and (c) $Ti_2WS_2Se_2$ monolayers without considering the SOC effect (only the bands related to band inversion are shown here). Red, blue, and purple bands represent the V/Ti- d_{xz} , d_{yz} spin-up band, W/Mo- d_z^2 spin-down band, and W/Mo- $d_x^2 - y^2$ spin-down band, respectively.

Figure S7. Spin-resolved band structures of (a) V2WS2Se2, (b) V2MoS2Se2, and (c) Ti2WS2Se2

monolayers without considering the SOC effect from HSE06 method.

Figure S8. Orbital-resolved energy bands of the (a) $V_2WS_2Se_2$, (b) $V_2MoS_2Se_2$, and (c) $Ti_2WS_2Se_2$ monolayers with considering the SOC effect (only the bands related to band inversion are shown here).

(a) v2W152Se2 1.0000000000000000 5.8328520454112338 0.0000000000000000 0.00000000000000 0.00000000	(b) V2M01525e2 1.00000000000000 0.0000000000000 5.8200015183163414 0.00000000000000 0.000000000000000 5.820015183163414 0.000000000000000 0.0000000000000 V Mo 2 1
Direct 0.0000000000000000 0.500000000554152 0.505229539110873 0.50000000000554152 -0.000000000000000 0.505229539110873 0.0000000000000 -0.00000000000000 0.502959084928835 0.2299054517316166 0.7700945631556890 0.520325236924473 0.7700945631556890 0.2299054517316166 0.5603262536924473 0.78012784148964239 0.7602784148964239 0.439698631781852 0.2397215999908816 0.2397215999908816 0.4396986381781852	Direct 0.00000000000000000 0.500000000554152 0.5052504299380516 0.50000000000000000 0.500000000000000 0.5052504299380516 0.000000000000000 0.0000000000000 0.503308025619655 0.2345206149556347 0.765479399316709 0.539698407032555 0.765479399316709 0.2345206149556347 0.559698407032555 0.77074989561642 0.757074989561452 0.4403011592967445 0.2429225159311414 0.2429225159311414 0.4403011592967445
$ \begin{array}{c} \textbf{(c)} \\ \texttt{Ti2W1S2Se2} \\ \texttt{1.0000000000000} \\ \texttt{5.7896777062362244} & \texttt{0.000000000000} \\ \texttt{0.0000000000000000} & \texttt{5.7896777062362244} & \texttt{0.0000000000000000} \\ \texttt{0.00000000000000000} & \texttt{0.000000000000000} & \texttt{22.8776614447735049} \\ \texttt{Ti} & \texttt{W} & \texttt{S} & \texttt{Se} \\ \texttt{2} & \texttt{1} & \texttt{2} & \texttt{2} \\ \texttt{Direct} \\ \texttt{0.000000000000000000} & \texttt{0.5000000000554152} & \texttt{0.5049520618571475} \\ \texttt{0.000000000000000000} & \texttt{0.50000000000000} & \texttt{0.50297309844525} \\ \texttt{0.0000000000000000000} & \texttt{0.50297309844525} \\ \texttt{0.230900277787500} & \texttt{0.756199871085558} & \texttt{0.528779279693135} \\ \texttt{0.7596729125889323} & \texttt{0.759672912589332} & \texttt{0.43770703885543428} \\ \texttt{0.2403271022983732} & \texttt{0.43770703885543428} \\ \end{array} $	$ \begin{array}{c} (d) \\ \texttt{TiZMo1323e2} \\ \texttt{1.0000000000000} \\ \texttt{5.7968949831332974} & \texttt{0.000000000000} \\ \texttt{0.0000000000000000} & \texttt{5.7968949831332974} & \texttt{0.00000000000000000} \\ \texttt{0.000000000000000000} & \texttt{0.00000000000000} & \texttt{17.7117276183695402} \\ \texttt{Ti} & \texttt{Mo} & \texttt{S} & \texttt{S} \\ \texttt{2} & \texttt{1} & \texttt{2} & \texttt{2} \\ \texttt{Direct} \\ \texttt{0.000000000000000000} & \texttt{0.50000000000000} & \texttt{0.5070682652818640} \\ \texttt{0.50000000000554152} & \texttt{0.5070682652818640} \\ \texttt{0.0000000000000000} & \texttt{0.50000000000000} & \texttt{0.5030021382261209} \\ \texttt{0.73673429258026969854} & \texttt{0.76171419941964202} & \texttt{0.5791030809674473} \\ \texttt{0.7617419941964202} & \texttt{0.238258026698854} & \texttt{0.5716130809674473} \\ \texttt{0.750734342265990} & \texttt{0.7509343322655990} & \texttt{0.4211765124420752} \\ \texttt{0.2490645846007066} & \texttt{0.2490645846007066} & \texttt{0.4211765124420752} \\ \end{array} $

Figure S9. The geometry of optimized structures for the (a) V₂WS₂Se₂, (b) V₂MoS₂Se₂, (c) Ti₂WS₂Se₂, and (d) Ti₂MoS₂Se₂ monolayers.