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FIG. S1: Qualitative variation in 2D MOF resistivity (ρ) as a function of progressive vertical

exfoliation. (a) ρ displays bulk characteristics; (b) the 2D confinement starts altering carriers flow

and ρ starts increasing; (c) The De Broglie wavelength of the carrier becomes comparable to the

quantum well (QW) thickness and ρ drops dramatically.1
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TABLE S1: Set of parameter values used in the simulations of Figure 3 with Lz = 2.97 nm.

Parameters not included in the table are JCoul = 1100, ES1 = 2500 cm−1 and absorption line

width σ =650 cm−1. λ values are: λ=1.1; λ+=1; λ−=0.8. All energy values are in 102 cm−1.

Sd = 3.5 Å

Fault slide (Å) tde tdh Ed
T

1.85† 6.12 5.20 3.7

2.05 4.92 -4.05 3.7

2.25 4.14 3.41 3.7

Sd = 3.7 Å

Fault slide (Å) tde tdh Ed
T

1.85† 3.84 3.10 3.5

2.05 -2.93 2.4 3.5

2.25 2.13 1.65 3.5

† Exp. inter-layer sliding value from Ref. [4].

TABLE S2: Set of parameter values used in the simulations of Figure 4. Last two columns corre-

spond to A1/A2 ratio at quasi-resonance (qR) and resonance (R) regimes, respectively. Parameters

not included in the table are JCoul = 1100 and ET−S1 = 1400 cm−1. The absorption line width is

σ =650 cm−1.

te (cm−1) th (cm−1) tp (105 cm−1) qR R

880 900 7.92 1.105 1.381

830 850 7.05 1.052 1.292

780 800 6.24 1.012 1.242

680 700 4.76 0.924 1.073

580 600 3.48 0.853 0.975

480 500 2.40 0.785 0.890

376 380 1.43 0.697 0.853
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FIG. S2: In Ni3(HITP)2 bulk, the density profiles of the conduction and valence bands Dc,v(E)

depend on both energies Ec,v and the effective masses m∗
c,v. By contrast, in the quantum well (QW)

obtained along the π−stacking, Dc,v(E) ∝ m∗
c,v/Lz and the band gap Eg increases as Eg,QW =

Eq=1
c − Eq=1

v (> Eg,bulk = Ec − Ev) . For discussions on top-down and bottom-up techniques for

generating ultra-thin 2D MOFs see Refs. [2,3].

FIG. S3: E−k diagram representation when the progressive exfoliation reaches the QW limit. (a)

Lz determines both the number of states (q = 1, 2, ..) in the QW and the effective bandgap Eeff
g .

(b) In the presence of imperfections and trapped states, the probability of an upward transition

depends on the uncertainty in the crystal momentum (∝ ℏ/d).

TABLE S3: Set of parameter values used in the simulations of Figure 5. All values are in 104 cm−1.

ET−S1(qR1) ET−S1(qR2) ET−S1(qR3) ET−S1(R) tp(slide) tp(eclipsed) JCoul

0.14 0.12 0.10 0 79.2 -79.2 1.1
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TABLE S4: Hopping terms, units and values for calculating the charge transfer rates according to

the Marcus Theory (Eq. 9), as displayed in Figure 8.

Hopping terms Units Values

T K Table S5

teclipsede/h eV Table S5†

tslidee eV Table S6

kB eV/K 8.61733E-05

λ eV Table S5

∆Ge
⨿ eV -2.170‡

∆Gh
∓ eV -2.177‡

ℏ eV × s 6.58212E-16

Lz Å 59.4

µT 109/s Table S5

† From Ref. [5], Figure 5.

⨿ [Ganion −Ggs] · 27.2107 eV
H

∓ [Gcation −Ggs] · 27.2107 eV
H

‡ Sum of electronic and thermal free energies
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TABLE S5: Calculated values for the eclipsed electron transfer rates as displayed in Figure 8.

Units are given in Table S4.

Nunits
† S⨿ |te| |th| µTe/h

a µTe/h
b µTe/h

c

18 3.30 0.164 0.210 2.89/4.07 4.96/7.05 9.70/13.86

17 3.49 0.158 0.171 2.67/2.70 4.61/4.68 9.02/9.79

16 3.71 0.136 0.157 1.98/2.27 3.41/3.94 6.73/7.75

15 3.96 0.102 0.138 1.11/1.76 1.92/3.05 3.71/6.00

† Number of units in the π-stacking direction

⨿ Lz/Nunits

a T1 = 290, λ = 1.05

b T2 = 296, λ = 1.06

c T3 = 298, λ = 1.08

TABLE S6: Calculated values for the slide electron transfer rates as displayed in Figure 8. Unit

and parameter values are provided in Tables S4-S5. Superscripts a, b, and c are referring to the

same T and λ values as in Table S3.

S⨿ |te| µT
a µT

b µT
c

3.30 0.149 2.38 4.10 8.01

3.49 0.139 2.07 3.57 6.97

3.71 0.125 1.68 1.88 5.64

3.96 0.082 0.72 1.24 2.43
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I. DENSITY OF STATES FOR BULK AND ULTRA-THIN SHEET

Here we recall the theory of the density of states in E and k-space for both bulk and

quantum well material.6,7 Main expressions are summarized in Table 1 in the main text.

In Ni3(HITP)2, atoms are arranged periodically. If we consider the (vertical) π−stacking

dimension in the reciprocal space, this periodic arrangement leads to a periodic potential

variation. In this periodic potential, Bloch’s theorem states that solutions to the Schrödinger

equation can be written as:

Ψk(r) = uk(r)e
ikr (1)

where k is the crystal momentum vector and uk(r) is a periodic function with the same

periodicity as the crystal known as the periodic cell function. The energies of these states

turn to be periodic in the wavenumber k = 2π
λω
, where λω is the De Broglie wavelength of the

carrier in the 2D framework. By applying an external electric field E to the system (Figure

4, main text), the net force on the carrier is due to

F = Fext + Fint (2)

where Fint corresponds to the crystal field. Provided the expression for the effective mass

m∗ =
(

1
ℏ2

∂2E
∂k2

)−1

, the crystal force field is already taken into account in the Bloch’s wave-

function and the carrier can move along the π−stacking direction as a plane wave. Thus,

the crystal momentum p = ℏk responds only to Fext, i.e. as a free particle

dp

dt
= Fext = −eE (3)

Since the medium confines the carrier propagation, Ψk(r) must go to zero at the boundaries.

The physical confinement also restricts the oscillation period of the wavefunction. According

to the standing condition, the round trip phase of the wavefunction must be a multiple integer

of 2π:

2kr = Q · 2π Q = 1, 2, 3... (4)

where the factor 2 on the LHS denotes the completion of a round trip phase kr. Since the

carrier moves according to the three orthogonal components:

k = îkx + ĵky + k̂kz (5)

with magnitude:

|k| =
(
k2
x + k2

y + k2
z

) 1
2 . (6)
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Each wavevector component must also satisfy:

2kxLx = m · 2π m = 1, 2, 3...

2kyLy = p · 2π p = 1, 2, 3...

2kzLz = q · 2π q = 1, 2, 3...

This means that the three wavevector components are discretized as:

km
x =

(
π

Lx

)
m, kp

y =

(
π

Ly

)
p, kq

z =

(
π

Lz

)
q (7)

Let us calculate now the density of states, i.e. the number of allowed states Ns between k

and k + dk per unit volume. In particular, state here means one allowed solution of the

boundary value problem (Figure S4a). Because of the boundary conditions, one needs to

consider only positive values of the k components, as negative values are already taken into

account (Figure S4b). This means that in the spherical k-space, we need to consider only

the positive octant (Figure S4c).

FIG. S4: (a) Representation of the allowed states in k-space. Each point represents one allowed

state and k provides the direction along which the carrier is propagating. (b) Because of the

standing wave boundary conditions, the negative direction of the k is automatically taken into

account. (c) Only the positive k values (i.e., one octant) must be considered.

The volume occupied by one allowed state in k-space is:

Vs =

(
π

Lx

)(
π

Ly

)(
π

Lz

)
(8)
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thus, Ns is given by the volume between k and k + dk, i.e. the shell volume = 1
8
· 4πk2dk,

divided by Vs:

Ns =
1
8
× 4πk2dk

Vs

× 2 (9)

where the factor 2 on the RHS comes from the fact that there can be two electrons per state.

In this definition, the density of states will be calculated as Ns per unit volume:

D(k)dk =
Ns

LxLyLz

=
k2

π2
dk (10)

To obtain the density in the E-space, since D(E)dE = D(k)dk,

D(E) =
k2

π2

dk

dE
(11)

In the conduction band, the energy of the electron is:

E = Ec +
ℏ2k2

2m∗
c

(12)

from which we can derive both k:

k = (E − Ec)
1
2

(
2m∗

c

ℏ2

) 1
2

(13)

and the first derivative of E with respect to k:

dE

dk
=

ℏ2

2m∗
c

2k (14)

By substitution of the previous two expressions in Dc(E), one obtains the expression for the

density of states:

Dc(E) =
k2

π2

dk

dE
=

(
k

2π2

)(
2m∗

c

ℏ2

)
=

1

2π2
(E − Ec)

1
2

(
2m∗

c

ℏ2

) 3
2

(15)

and for the valence band:

Dv(E) =
1

2π2
(Ev − E)

1
2

(
2m∗

v

ℏ2

) 3
2

(16)

Let us move now to calculate the number of allowed states between k and k + dk in the
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quantum nanosheet. Whenever the Lz thickness becomes comparable to λω of the carrier, z

dimension is at nanoscale regime whereas kx and ky dimensions are still at the macroscale

regime. The in−plane number of states kin = kx × ky is still very large, yet the separation

along z is increased and the allowed values for kz becomes highly discretized with spacing

equal to π
Lz

while the maximum number of allowed states are determined by π
S
(Figure S5).

The reader is reminded that S corresponds to the interlayer distance and the lowest possible

value of Lz is for the case when only 2 layers in the quantum nanosheet are assumed.

FIG. S5: High discretization along kz as a result of reducing Lz dimension. Still, the number of

in−plane allowed states (represented by the blue disc planes in the figure) remains very large.

k can be decomposed into an in−plane component plus the discretized component along

z:

k = kin + ẑkz (17)

Correspondingly, the energy may be written as

E = Ec +
ℏ2k2

in

2m∗
c

+ E(q = 1) (18)

The number of points between k and k + dk must correspond to the number of allowed

states between kin and kin + dkin :

D(k)dk = D(kin)dkin (19)
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In the evaluation of the incremental vector dkin (Figure S6), because of the boundary con-

ditions one needs to consider only the positive quadrant in k-space:

FIG. S6: Incremental vector dkin and area of one point in kin space.

nkin =
1
4
× Area{kin + dkin}

volume of one state
=

1
4
× 2πkindkin(

π
Lx

)(
π
Ly

) × 2 (20)

Thus, the density of allowed states between kin and kin + dkin is provided by nkin per

unit volume:

D(kin)dkin =
πkindkin(
π
Lx

)(
π
Ly

) × 1

LxLyLz

=
kin
πLz

dkin (21)

The density in E space can be obtained from expression 18:

dE

dkin
=

ℏ2kin
m∗

c

(22)

Since D(E)dE = D(kin)dkin,

D(E)dE = D(kin)
dkin
dE

(23)

By substituting the expression for D(kin),

Dc(E) =
D(kin)(

dE
dkin

) =

(
kin
πLz

)
(

ℏ2kin
m∗

c

) =
m∗

c

ℏ2πLz

(24)

Finally, the main implications in the momentum and energy space which stem from expres-

sion (24) can be summarized as follows :

(a) D(E) does not depend on the energy (i.e., D(E) is constant) but rather on the vertical
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thickness of the 2D MOF;

(b) the E − k diagram of the nano framework is characterized by sub-bands. To each sub-

band corresponds a density of states D(E);

(c) because of the high discretization along kz, the tip of the vector k (Figure S5,S7) may

reach, depending on its energy, one of the disc planes characterized by increasing density;

(d) the densities in valence and conduction bands assume a step variation, as represented in

Figure S2;

(e) the first allowed energy state along kz in the nanolayer is at higher energy with respect

to the bulk. The effective bandgap increases by an amount of the order of ℏ/Lz :

Eg,eff = Eg +∆E(q = 1). (25)
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FIG. S7: Qualitative correlation between the conduction sub-bands (a), the discretization of

the allowed states along kz (b) and the step ρc(E) profile as a result of the ultra-thin dimension

Lz in Ni3(HITP)2 and discretization of the allowed states along kz (c). In particular, (a) if the

imperfection level is deep, the state is highly localized with a wavefunction that extends as far as the

nearest neighbours. According to the indeterminancy principle, if the uncertainty ∆X in location

is small, the one in k value ∆k must be large. This means that transitions from imperfection

level to a wide range of conduction sub-bands are possible and the tip of the k vector may reach a

range of sub-bands (and discoid planes) (b)-(c). Conversely, for shallow imperfections this range

is restricted essentially to one or two sub-bands (see also Figure S5).
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