Co-substituted metal	Zn	М	O ₁	O ₂	O ₃
Zn-Rb	-1.29	-0.85	0.55	1.15	1.19
Zn-Nd	-1.23	-2.04	1.21	1.22	1.21
Zn-In	-1.25	-1.62	1.12	1.16	1.21
Zn-K	-1.34	-0.84	0.85	1.13	1.15
Zn-Pb	-1.24	-1.70	1.09	1.13	1.23
Zn-Na	-1.33	-0.84	0.81	1.15	1.15
Zn-Cd	-1.31	-1.26	0.86	1.17	1.16
Zn-Ag	-1.32	-1.06	0.97	1.05	1.20
Zn-Ca	-1.55	-1.30	0.92	1.22	1.16
Zn-Sc	-1.32	-2.10	1.17	1.25	1.20
Zn-Sr	-1.34	-1.59	0.98	1.21	1.16
Zn-Ba	-1.32	-1.58	0.97	1.19	1.16
Zn-Mn	-1.30	-1.67	1.09	1.15	1.22
Zn-Zr	-1.24	-2.31	1.23	1.23	1.21
Zn-Mg	-1.29	-1.68	0.84	1.26	1.19
Zn-Tl	-1.28	-1.19	1.01	1.08	1.19
Zn-Ti	-1.30	-1.99	1.17	1.19	1.21
Zn-Y	-1.24	-2.21	1.25	1.26	1.20
Zn-Hf	-1.24	-2.28	1.23	1.23	1.20
Zn-La	-1.30	-2.12	1.14	1.23	1.21
Zn-Ga	-1.29	-1.65	0.90	1.19	1.18
Zn-Fe	-1.32	-1.68	1.04	1.14	1.21
Zn-Al	-1.28	-2.43	0.89	1.37	1.17
Zn-Sn	-1.24	-2.17	1.18	1.19	1.19
Zn-Au	-1.31	-1.11	0.97	1.05	1.19
Zn-Pr	-1.22	-2.23	1.22	1.22	1.22
Zn-Rh	-1.30	-1.41	1.04	1.08	1.21

Table S1. Effective bader charge of substituted metal atoms with oxygen atoms near oxygen vacancies when Zn and other metal atoms are co-substituted on the $CeO_2(111)$ surface.

Zn-Bi	-1.24	-1.87	1.14	1.15	1.21
Zn-Ge	-1.24	-2.09	1.17	1.17	1.20
Zn-Cu	-1.30	-1.04	0.86	1.11	1.18
Zn-Pd	-1.31	-1.20	1.00	1.19	1.21
Zn-Cs	-1.28	-0.86	0.53	1.14	1.20
Zn-Cr	-1.27	-1.76	1.02	1.15	1.20
Zn-Nb	-1.28	-2.63	1.21	1.23	1.21
Zn-Ta	-1.28	-2.51	1.19	1.21	1.19
Zn-Pt	-1.30	-1.32	1.02	1.07	1.20
Zn-Co	-1.29	-1.46	0.90	1.18	1.19
Zn-Ru	-1.31	-1.51	1.09	1.11	1.21
Zn-Sb	-1.29	-2.18	1.17	1.19	1.20
Zn-V	-1.26	-1.85	1.03	1.18	1.21
Zn-Ni	-1.30	-1.14	0.90	1.11	1.18
Zn-W	-1.29	-2.58	1.07	1.21	1.23
Zn-Mo	-1.30	-2.30	0.99	1.21	1.21
Zn-Ir	-1.30	-1.51	1.05	1.10	1.19
Zn-Os	-1.30	-1.78	1.09	1.12	1.19

Fig. S1 DFT calculated the charge-density difference of Zn and other metal atoms co-substituted CeO₂ (111). (Other metal ions are Ag, Al, Au, Ba, Bi, Ca, Cd, Co, Ni, Cs, Cu and Fe.)

Fig. S2 DFT calculated the charge-density difference of Zn and other metal atoms co-substituted CeO₂ (111). (Other metal ions are Ga, Ge, Hf, In, Ir, K, La, Mg, Mn, Mo, Na and Nb.)

Fig. S3 DFT calculated the charge-density difference of Zn and other metal atoms co-substituted CeO₂ (111). (Other metal ions are Y, W, V, Tl, Ti, Tc, Ta, Sr, Sn, Sc, Sb, Ru, Zr, Rh, Rb, Pt, Pr, Pd, Pb and Ni.)

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-0.71	-0.53	-0.20	-0.83	-0.14	-0.15	-0.19		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-0.28	-0.27	0.65	0.82	-0.16	0.98	0.77		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	0.44	-0.20	0.95	-0.21	-0.18	-0.39	-0.29		

Table S2. Adsorption sites and adsorption energies (E_{ads}) of CH₄ in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-1.88	-1.88	-2.59	-1.63	-0.59	-0.79	-1.88		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-0.42	-4.22	0.48	-3.60	-3.69	-3.75	-4.26		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	0.35	-3.71	-4.31	-2.61	-3.71	0.57	-0.56		

Table S3. Adsorption sites and adsorption energies (E_{ads}) of CH_3 in chemical looping dry reforming of methane on the surface of pristine CeO_2 (111) as well as on the surface of Zn and Nd co-substituted CeO_2 (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-2.54	-2.54	-3.81	-2.51	-2.54	-3.90	-2.54		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-3.76	-4.81	-4.73	-3.62	-3.82	-3.64	-5.65		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-3.73	-4.82	-4.79	-3.76	-3.75	-3.77	-4.79		

Table S4. Adsorption sites and adsorption energies (E_{ads}) of CH_2 in chemical looping dry reforming of methane on the surface of pristine CeO_2 (111) as well as on the surface of Zn and Nd co-substituted CeO_2 (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-3.34	-3.34	-5.16	-3.34	-3.34	-5.13	-3.34		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-5.21	-7.21	-5.11	-5.04	-5.93	-5.97	-6.21		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-6.04	-5.20	-6.77	-5.04	-5.22	-5.99	-5.22		

Table S5. Adsorption sites and adsorption energies (E_{ads}) of CH in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-2.92	-2.92	-6.50	-2.92	-6.50	-6.58	-2.91		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-4.90	-8.24	-6.68	-7.01	-7.47	-7.29	-8.48		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-7.28	-7.46	-8.48	-7.35	-7.46	-8.24	-3.97		

Table S6. Adsorption sites and adsorption energies (E_{ads}) of C in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-2.32	-2.32	-3.44	-2.13	-0.52	-3.75	-2.30		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	0.84	-5.13	-0.17	-4.58	-4.72	-4.76	-5.12		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-4.25	0.79	-5.20	-4.58	-4.73	-3.39	0.29		

Table S7. Adsorption sites and adsorption energies (E_{ads}) of H in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Te	op ₁	Ce-Top ₂	Oxygen Vacancy	Ce-O-]	Bridge	Hollow		
E_{ads}/eV	-6.2	6	-6.25	-6.26	-3.	-3.53			
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-2.67	-3.16	-1.35	-3.25	-2.62	-3.38	-3.30		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-1.29	-2.47	-0.46	-2.51	-3.62	-0.70	-1.47		

Table S8. Adsorption sites and adsorption energies (E_{ads}) of O in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-0.81	-0.65	-0.45	-0.77	-0.30	-0.48	-0.31		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	0.53	-0.59	-0.38	0.43	-0.17	-0.17	-3.67		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	-0.46	-0.39	-0.33	0.44	-0.41	-0.35	0.44		

Table S9. Adsorption sites and adsorption energies (E_{ads}) of CO in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-0.86	-0.81	-0.68	-0.23	-0.79	-0.62	-0.91		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	0.60	0.44	-0.43	0.69	-0.44	-0.28	-0.26		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	0.38	0.71	-0.59	0.51	0.40	0.35	0.41		

Table S10. Adsorption sites and adsorption energies (E_{ads}) of CO₂ in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)									
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow		
E_{ads}/eV	-0.51	-0.58	-0.04	-0.04	-0.50	-0.54	-0.14		
Zn and Nd co-substituted CeO ₂ (111)									
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄		
E_{ads}/eV	-0.20	-0.15	0.72	0.87	0.80	0.80	0.76		
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂		
E_{ads}/eV	0.68	0.78	0.74	0.78	0.77	0.71	0.77		

Table S11. Adsorption sites and adsorption energies (E_{ads}) of H_2 in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)								
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow	
E_{ads}/eV	-4.04	-4.05	-4.04	-4.06	-4.06	-4.06	-4.05	
Zn and Nd co-substituted CeO ₂ (111)								
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄	
E_{ads}/eV	-1.97	-1.02	-1.91	-0.89	-0.66	-1.98	-1.44	
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂	
E_{ads}/eV	-1.03	0.95	-1.37	-0.61	-1.97	-1.96	-1.83	

Table S12. Adsorption sites and adsorption energies (E_{ads}) of CH₃O in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)								
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow	
E_{ads}/eV	-1.34	-1.34	-1.87	-1.37	-1.34	-2.03	-2.02	
Zn and Nd co-substituted CeO ₂ (111)								
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄	
E_{ads}/eV	-0.01	-0.22	-1.17	0.01	-0.02	-0.28	-5.15	
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂	
E_{ads}/eV	0.20	-0.19	-1.11	-0.29	-0.11	-0.20	-0.05	

Table S13. Adsorption sites and adsorption energies (E_{ads}) of CH₂O in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

pristine CeO ₂ (111)								
Adsorption sites	Ce-Top ₁	Ce-Top ₂	O-Top	Oxygen Vacancy	O-O- Bridge	Ce-O- Bridge	Hollow	
E_{ads}/eV	-1.72	-0.90	-4.10	-1.71	-0.95	-3.99	-1.70	
Zn and Nd co-substituted CeO_2 (111)								
Adsorption sites	Ce-Top	Zn-Top	Nd-Top	O-Top ₁	O-Top ₂	O-Top ₃	O-Top ₄	
E_{ads}/eV	-4.75	-4.62	-2.94	-3.81	-4.92	-3.91	-4.62	
Adsorption sites	Oxygen Vacancy	O-O- Bridge ₁	O-O- Bridge ₂	Ce-O- Bridge ₁	Ce-O- Bridge ₂	Hollow ₁	Hollow ₂	
E_{ads}/eV	5.99	-4.97	-5.57	-3.80	-4.00	-4.23	-2.84	

Table S14. Adsorption sites and adsorption energies (E_{ads}) of CHO in chemical looping dry reforming of methane on the surface of pristine CeO₂ (111) as well as on the surface of Zn and Nd co-substituted CeO₂ (111).

·	Gas molecule								
intermediates	ZPE	TS	E _{SCF}	G _{correction}	G				
CH_4	1.19, 1.19 ¹	2.81	-24.03, -24.031	-1.07	-25.10				
СО	0.13, 0.13 ¹	2.70	-14.79, -14.79 ¹	-2.23	-17.02				
O ₂	0.10, 0.10 ¹	2.78	-9.86 , -9.86 ¹	-2.34	-12.19				
H_2	$0.27, 0.27^1$	1.86	-6.76, -6.76 ¹	-1.27	-8.03				
CO_2	0.31, 0.311	3.20	-22.99, -22.99 ¹	-2.40	-25.40				

Table S15. The zero-point energies (ZPE), the product of the vibrational entropy and temperature (TS), the optimized structural energies (E_{SCF}), the Gibbs free energy correction values ($G_{correction}$), the Gibbs free energies (G) for gas-phase molecules have been obtained from the frequency calculations at 1073.15K.

1. ACS Catalysis, 2023, 13, 1381-1399

intermediates	pristine CeO ₂ (111)							
intermediates	ZPE	TS	E _{SCF}	G _{correction}	G			
CH ₄	1.23	1.83	-677.57	0.09	-677.48			
CH ₃	1.00	1.04	-673.49	0.39	-673.11			
CH ₂	0.67	0.97	-668.71	0.13	-668.58			
СН	0.38	0.43	-663.97	0.17	-663.81			
С	0.11	0.55	-660.61	-0.24	-660.84			
Н	0.29	0.27	-657.58	0.15	-657.42			
Ο	0.06	0.51	-660.56	-0.23	-660.79			
СО	0.16	1.07	-668.32	-0.55	-668.87			
CO ₂	0.32	1.50	-676.60	-0.66	-677.26			
H_2	0.33	1.16	-660.05	-0.43	-660.48			
CH ₃ O	1.07	1.95	-681.24	-0.14	-681.38			
CH ₂ O	0.83	1.25	-676.88	0.15	-676.73			
СНО	0.55	1.11	-673.90	-0.10	-674.00			

Table S16. The zero-point energies (ZPE), the product of the vibrational entropy and temperature (TS), the optimized structural energies (E_{SCF}), the Gibbs free energy correction values ($G_{correction}$), the Gibbs free energies (G) for gas-phase molecules adsorbed on the surface of pristine CeO₂ (111) have been obtained from the frequency calculations at 1073.15K.

	Zn and Nd co-substituted CeO ₂ (111)						
	ZPE	TS	E _{SCF}	G _{correction}	G		
CH ₄	1.21	1.34	-667.58	0.40	-667.18		
CH ₃	1.01	1.25	-665.66	0.27	-665.39		
CH_2	0.69	1.07	-660.92	0.04	-660.88		
СН	0.38	0.70	-656.04	-0.01	-656.06		
С	0.10	0.36	-652.96	-0.15	-653.11		
Н	0.28	0.32	-649.40	0.10	-649.30		
Ο	0.03	0.42	-647.92	-0.23	-648.15		
СО	0.26	0.34	-661.33	0.11	-661.22		
CO ₂	0.33	1.79	-666.74	-0.86	-667.60		
H_2	0.33	1.16	-650.12	-0.43	-650.55		
CH ₃ O	1.11	1.44	-669.62	0.29	-669.33		
CH ₂ O	0.75	1.49	-666.48	-0.17	-666.65		
СНО	0.55	1.03	-665.83	-0.01	-665.84		

Table S17. The zero-point energies (ZPE), the product of the vibrational entropy and temperature (TS), the optimized structural energies (E_{SCF}), the Gibbs free energy correction values ($G_{correction}$), the Gibbs free energies (G) for gas-phase molecules adsorbed on the surface of Zn and Nd cosubstituted CeO₂ (111) have been obtained from the frequency calculations at 1073.15K.