Supplementary Information: Investigation of the electronic and magnetic properties of bare and surface functionalized double ordered MXenes for spintronic devices

Aymila Akyildiz,^a Isil Ilgaz Aysan,^b, Yusuf Zuntu Abdullahi,^b Berna Akgenc Hanedar,^{*c} Zeynep Demir Vatansever,^{†a} and Fatih Ersan^{‡b}

1 Linear response approach

We used linear response approach formulated by Cococcioni et al.¹ to evaluate the U parameters for DTM structures.

Quantum ESPRESSO (QE) code² was used for the LRA calculations. To produce results with negligible error, we make sure that similar computational parameters, such as PAW PPs, are used for both VASP and QE computations.

A typical example of LRA calculations for Cr_3C_2 and $Cr_3C_2O_2$ are displayed in Fig. S1. We first determine x_0 and x which represent the non-interacting (bare) and interacting density response functions of the system with respect to localized perturbations. The parameter U_{eff} is then evaluated from the expression: $U_{eff} = (x_0^{-1} - x^{-1})$.

^a Department of Physics, Dokuz Eylul University, Izmir 35160, Turkey; E-mail: zeynep.demir@deu.edu.tr

^b Department of Physics, Aydin Adnan Menderes University, Aydin 09010, Turkey; Email: fatih.ersan@adu.edu.tr

^c Department of Physics, Kirklareli University, Kirklareli 39100, Turkey; E-mail: berna.akgenc@klu.edu.tr

Fig. 1 Linear response of d orbital occupations as a function of potential shift α . The curves depicted by the squares and circles lines are labeled bare and interacting. The inverse response functions are deduced numerically by calculating the slope of the curves. x_0 follows from the slope of curve bare, whereas x from the slope of curve interacting.

Table 1	The calculated U_{ej}	ff values in ev	for each meta	i atom in bare and	oxygen-terminated	iviXene monolayer	structures

Mxene	Ti	V	Cr	Zr	Nb	Мо	Ta
Cr ₃ C ₂			4.71				
Ti ₃ C ₂	3.06						
Zr ₃ C ₂				2.06			
Cr ₂ NbC ₂			3.67		3.30		
Cr ₂ TaC ₂			3.97				4.06
Cr ₂ TiC ₂	4.07		5.11				
Cr ₂ VC ₂		4.40	4.26				
Mo ₂ NbC ₂					4.12	4.11	
Mo ₂ TaC ₂						4.10	4.14
Mo ₂ TiC ₂	4.06					4.00	
Mo ₂ VC ₂		4.06				4.14	
Ti ₂ NbC ₂	3.41				3.47		
Ti ₂ TaC ₂	3.41						3.71
$Cr_3C_2O_2$			3.68				
Ti ₃ C ₂ O ₂	3.13						
$Zr_3C_2O_2$				1.81			
$Cr_2NbC_2O_2$			3.98		3.13		
Cr ₂ TaC ₂ O ₂			3.98				2.72
Cr ₂ TiC ₂ O ₂	3.67		5.43				
Cr ₂ VC ₂ O ₂		4.73	4.33				
Mo ₂ NbC ₂ O ₂					3.25	4.02	
Mo ₂ TaC ₂ O ₂						4.02	2.88
Mo ₂ TiC ₂ O ₂	3.46					4.00	
Mo ₂ VC ₂ O ₂		4.48				4.09	
Ti ₂ NbC ₂ O ₂	3.39				3.06		
Ti ₂ TaC ₂ O ₂	3.40						2.67

Table 2 The calculated adsorption energy values (eV) for per oxygen atom on MXenes structures are tabulated with the favorable adsorption site.

	$Cr_3C_2O_2$	Ti ₃ C ₂ O ₂	$Zr_3C_2O_2$	$Cr_2NbC_2O_2$	$Cr_2TaC_2O_2$	Cr ₂ TiC ₂ O ₂	$Cr_2VC_2O_2$	Mo ₂ NbC ₂ O ₂	Mo ₂ TaC ₂ O ₂	Mo ₂ TiC ₂ O ₂	$Mo_2VC_2O_2$	Ti ₂ NbC ₂ O ₂	Ti ₂ TaC ₂ O ₂
E_{ads}	-6.61	-8.17	-8.71	-6.46	-6.57	-6.60	-6.60	-6.97	-7.01	-7.27	-7.12	-8.13	-8.23
Ads. Site	C	С	С	С	С	В	С	В	В	В	В	С	С

1 - 7

MXene	Cr ₃ C ₂	Ti ₃ C ₂	Zr_3C_2	Cr ₂ NbC ₂	Cr ₂ TaC ₂	Cr ₂ TiC ₂	Cr_2VC_2	Mo ₂ NbC ₂	Mo ₂ TaC ₂	Mo ₂ TiC ₂	Mo ₂ VC ₂	Ti ₂ NbC ₂	Ti ₂ TaC ₂
wo-U	3.025	3.097	3.344	3.121	3.102	3.078	3.006	3.043	3.026	2.960	2.940	3.139	3.123
w-U	3.162	3.128	3.371	3.148	3.196	3.153	3.087	3.161	3.163	3.084	3.032	3.163	3.152
MXene	$Cr_3C_2O_2$	Ti ₃ C ₂ O ₂	$Zr_3C_2O_2$	$Cr_2NbC_2O_2$	Cr ₂ TaC ₂ O ₂	$Cr_2TiC_2O_2$	$Cr_2VC_2O_2$	Mo ₂ NbC ₂ O ₂	Mo ₂ TaC ₂ O ₂	Mo ₂ TiC ₂ O ₂	$Mo_2VC_2O_2$	Ti ₂ NbC ₂ O ₂	Ti ₂ TaC ₂ O ₂
wo-U	2.954	3.013	3.278	3.114	3.107	3.099	3.011	3.002	3.003	2.842	2.911	3.004	3.061
w-U	2.954	3.084	3.316	3.114	3.106	3.078	3.010	2.298	2.974	2.963	2.927	3.108	3.103

Table 3 The optimized lattice constants a = b (Å) of the bare oxygen terminated MXenes

Table 4 The calculated cohesive (E_{coh}) and formation (E_f) energy vaules in eV/atom for bare monolayer MXene structures.

MXene	Cr ₃ C ₂	Ti ₃ C ₂	Zr_3C_2	Cr ₂ NbC ₂	Cr ₂ TaC ₂	Cr ₂ TiC ₂	Cr_2VC_2	Mo ₂ NbC ₂	Mo ₂ TaC ₂	Mo ₂ TiC ₂	Mo_2VC_2	Ti ₂ NbC ₂	Ti ₂ TaC ₂
E_{coh}	5.419	7.167	7.731	6.339	6.648	6.079	6.024	7.272	7.601	7.078	6.986	7.447	7.759
E_f	0.242	-0.352	-0.331	0.053	0.118	-0.033	0.108	0.296	0.341	0.144	0.322	-0.286	-0.225

Fig. 2 Top and side views of the MXene structures with the rectangular cells. The nearest-, next-nearest- and next-next-nearest-neighbor exchange coupling parameters (J_1 , J_2 and J_3 , respectively) shown by arrows.

Fig. 3 Magnetic orientations for a) each metal layer atoms have magnetic moment b) middle metal layer atoms have no magnetic moment. Red and green balls illustrate spin-up and spin-down orientation, respectively.

Fig. 4 Hysteresis curves of Cr-based MXene structures at several temperatures. .

MXene	AFM1	AFM2	AFM3	FM	
Cr ₂ NbC ₂	-39.93363466	-39.89614783	-39.79280551	-40.28894902	
$Cr_2NbC_2O_2$	-55.82777373	-55.73574424	-55.73539916	-55.84864899	
Cr_2TiC_2	-35.62423928	-34.8499153	-34.86805635	-35.58448503	
$Cr_2TiC_2O_2$ (C)	-49.17107243	-49.18977845	-49.20004705	-49.17655127	
$Cr_2TiC_2O_2$ (Ti)	-50.54057159	-50.41220599	-50.424833	-50.54418349	
Cr_2VC_2	-35.55066893	-35.13583162	-35.10488067	-35.58362736	
$Cr_2VC_2O_2$	-51.02206546	-50.9494969	-50.95343245	-51.05433624	
Cr ₂ TaC ₂	-40.11820197	-40.16784456	-40.10189687	-40.42710694	
Cr ₂ TaC ₂ O ₂	-57.86943942	-57.78049557	-57.77948186	-57.89734561	
Ti ₃ C ₂	-36.539260006	-36.277446085	-36.293154265	-36.43362736	
$Ti_3C_2O_2$	-56.04564962	-56.045656865	-56.045654085	-56.045646315	
Zr_3C_2	-42.29698757	-42.19103438	-42.18166457	-42.25272169	
$Zr_3C_2O_2$	-63.84851385	-63.84851472	-63.84851494	-63.84851332	
Mo ₂ NbC ₂	-37.773355645	-38.208717855	-38.197761875	-38.078943085	
Mo_2TaC_2	-38.713913385	-39.275342075	-39.239666205	-38.72370495	
Mo ₂ TiC ₂	-	-35.49640249	-35.45696606	-35.24654412	
Mo ₂ TiC ₂ O ₂	-54.028703125	-54.028698795	-54.02869796	-54.02870732	
Mo ₂ VC ₂	-	-35.06399216	-35.12091152	-34.890166165	
Ti ₂ NbC ₂	-38.236896235	-38.158908405	-38.171593025	-38.24506252	
Ti ₂ NbC ₂ O ₂	-58.199017165	-58.19900676	-58.19900241	-58.198997465	
Ti ₂ TaC ₂	-39.091422545	-39.024745335	-39.028009125	-38.790671305	
$Ti_2TaC_2O_2$	-60.030715305	-60.030754905	-60.030730815	-60.0307384	
MXene	AFM1	AFM2	AFM3	AFM4	FM
Cr ₃ C ₂	-35.49828528	-34.77116233	-34.88776263	-34.59715347	-35.66359075
$Cr_3C_2O_2$	-52.56146121	-52.43882712	-52.52808045	-52.37321699	-52.73552186

Table 5 Total energy value (in unit of eV) per formula unit for different magnetic orientations.

Table 6 Total energy value (in unit of eV) per formula unit for the energetically most stable magnetic orientations (including SOC).

MAE (eV)	001	010	100
Cr ₃ C ₂	-34.27745623	-34.27745248	-34.277419025
$Cr_3C_2O_2$	-52.743875	-52.7437452	-52.7437375
Ti ₃ C ₂	-36.543246	-36.5432155	-36.543217
$Ti_3C_2O_2$	-	-	-
Zr_3C_2	-42.3511375	-42.3507555	-42.350753
$Zr_3C_2O_2$	-	-	-
Cr ₂ NbC ₂	-38.954550355	-38.95470851	-38.95418005
$Cr_2NbC_2O_2$	-53.84957	-53.84938	-53.849615
Cr_2TaC_2	-38.72029892	-38.721267595	-38.721212845
$Cr_2TaC_2O_2$	-58.02628	-58.026137	-58.02639
Cr_2TiC_2	-34.379664305	-34.37962562	-34,37962554
$Cr_2TiC_2O_2(C)$	-49.2059305	-49.2060275	-49.2060485
$Cr_2TiC_2O_2(Ti)$	-50.550565	-50.550495	-50.550505
Cr_2VC_2	-34.356312285	-34.356284255	-34.35628311
$Cr_2VC_2O_2$	-51.060775	-51.060725	-51.06072
Mo ₂ NbC ₂	-36.48127681	-36.480902455	-36.480828575
Mo ₂ NbC ₂ O ₂	-	-	-
Mo_2TaC_2	-37.113683915	-37.11336528	-37.11384288
$Mo_2TaC_2O_2$	-	-	-
Mo ₂ TiC ₂	-33.92451676	-33.924292	-33.924938665
Mo ₂ TiC ₂ O ₂	-	-	-
Mo_2VC_2	-33.55538638	-33.55522778	-33.555568425
$Mo_2VC_2O_2$	-	-	-
Ti ₂ NbC ₂	-36.8831069	-	-
Ti ₂ NbC ₂ O ₂	-	-	-
Ti ₂ TaC ₂	-	-	-
Ti ₂ TaC ₂ O ₂	-	-	-

Notes and references

- 1 M. Cococcioni, & S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method, Physical Review B **71**, 035105 (2005).
- 2 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, & Others, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal Of Physics: Condensed Matter 21, 395502 (2009).