Supporting information

for

Knowledge-driven design of boron-based catalysts in oxidative dehydrogenation of propane

Weixi Chen, Ziyi Liu, Lihan Zhu, Dongqi Wang*

State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China

*E-mail: wangdq@dlut.edu.cn (D.W.)

step	Reactions
1	$B + O_2 \leftrightarrow BOO$.
2	$C_3H_8 + BOO \rightarrow C_3H_7 + B + HOO \rightarrow$
3	$C_3H_8 + HOO \rightarrow C_3H_7 + H_2O_2$
4	$\cdot C_3H_7 + O_2 \rightarrow C_3H_6 + HOO \cdot$
5	$HOO\cdot + * \rightarrow H^* + O_2$
6	$H_2O_2 + B \rightarrow *OH + \cdot OH$
7	$C_3H_8 + \cdot OH \rightarrow \cdot C_3H_7 + H_2O$
8	$\cdot OH + * \rightarrow *OH$

Table S1 Elementary reactions involved in ODHP1

Table S2 Equations based on radical chain reaction mechanism of ODH¹

Equations	order
K1PO20B	1
$\theta_{O2} = K1PO2 + 1$	
$\frac{d[\cdot C_3H_7]}{2}$	2
$dt = k_2 p_{C3H8} \theta_{O2} + k_3 p_{C3H8} [HOO \cdot] - k_4 p_{O2} [C_3 H_7 \cdot] + k_7 p_{C3H8} [\cdot OH] = 0$	
$d[HOO\cdot]$	3
$dt = k_2 p_{C3H8} \theta_{O2} - k_3 p_{C3H8} [HOO \cdot] + k_4 p_{O2} [C_3 H_7 \cdot] - k_5 [HOO \cdot] \theta_* = 0$	
$\frac{d[HO\cdot]}{h}$	4
$dt = k_6[H_2O_2] \theta_{B'} - k_7 p_{C3H8}[\cdot OH] - k_8[\cdot OH] \theta_* = 0$	
$\frac{d[H_2O_2]}{dH_2O_2}$	5
$dt = k_3 p_{C3H8} [HOO \cdot] - k_6 [H_2O_2] \theta_{B'} = 0$	
$2k_2p_{C3H8}\theta_{O2} - k_5[HOO\cdot] \theta_* + k_7p_{C3H8}[\cdot OH] = 0$	6
$k_3 p_{C3H8}[HOO \cdot] - k_7 p_{C3H8}[\cdot OH] - k_8[\cdot OH]\theta_* = 0$	7

Reference

1. H. Tian, Y. Liu and B. Xu, Catalysis Today, 2023, 420, 114048.