Supplementary Information

Unlocking the Potential of Ni-Rich LiNi_{0.9}Co_{0.1}O₂ Cathodes: A DFT Investigation of Performance-Limiting Factors

Temitayo Ikuerowo, Olusegun Tomomewo, and Omotayo Salawu*

E-mail: omotayo.salawu@kaust.edu.sa

Supercell Convergence

Figure S1: Supercell convergence plot

Effect of Hubbard U parameter changes on the structural

properties and Li vacancy formation energy in NC91

Table S1: Effect of changes to Hubbard U parameter for Ni to the structural properties of NC91

U value	Unit cell volume (Å ³)
4.5	104.044
5.0	104.09
5.5	103.161
6.0	102.669
6.5	102.687
7.0	102.295
7.5	102.181

Table S2: Effect of changes to Hubbard U parameter for Ni to the vacancy formation energy in NC91

U value	Vacancy Formation energy (eV)
4.5	5.57
5.0	5.67
6.0	5.44
6.5	6.16

Effect of London Dispersion

Property	PBE (no dispersion)	PBE-D3 (with dispersion)	Difference (Δ)
Unit cell volume $(Å^3)$	98.11	97.86	0.25
Total Energy (eV)	-157.56	-157.64	0.08

Table S3: Comparison of Bulk Properties with and without Dispersion

Table S4: Defect Formation Energies with and without Dispersion Defect considered: Oxygen vacancy (neutral charge state).

Material	Method	E_{defect} (eV)	Difference $(\Delta E, eV)$
LiCoO ₃	PBE	2.32	
	PBE-D3	2.38	0.06
LiNiO ₃	PBE	2.45	
	PBE-D3	2.46	0.01

Chemical Potentials for $LiMO_2$ (M = Co, Ni, $Ni_{0.9}Co_{0.1}$)

The choice of chemical potentials is influenced by equilibrium conditions and constraints that prevent the precipitation of secondary phases. To form stable configurations of LNO and LCO, the chemical potentials must satisfy the following conditions:

$$\Delta \mu_{Li} + \Delta \mu_{Co} + 2\Delta \mu_O = \Delta \mu_{E_f}(LCO), \tag{1}$$

$$\Delta \mu_{Li} + \Delta \mu_{Ni} + 2\Delta \mu_O = \Delta \mu_{E_f}(LNO). \tag{2}$$

Where,

$$\Delta \mu_i = \mu_i - \mu_i^o \tag{3}$$

In addition, to prevent the precipitation of secondary phases, the following need to be considered as boundaries of the chemical potentials:¹

For LCO:

$$2\Delta\mu_{Li} + \Delta\mu_O \le -5.75 eV/fu...(Li_2O),\tag{4}$$

$$2\Delta\mu_{Li} + 2\Delta\mu_O \le -5.84eV/fu...(Li_2O_2) \tag{5}$$

$$3\Delta\mu_{Co} + 4\Delta\mu_O \le -9.94eV/fu...(Co_3O_4)$$
 (6)

$$6\Delta\mu_{Li} + \Delta\mu_{Co} + 4\Delta\mu_O \le -20.62eV/fu...(Li_6CoO_4) \tag{7}$$

$$\Delta\mu_{Co} + 2\Delta\mu_O \le -3.13eV/fu...(CoO) \tag{8}$$

For LNO:

$$\Delta \mu_{Ni} + 2\Delta \mu_O \le -2.89 eV/fu...(NiO) \tag{9}$$

$$2\Delta\mu_{Li} + \Delta\mu_{Ni} + 2\Delta\mu_O \le -8.76eV/fu...(Li_2NiO_2) \tag{10}$$

$$\Delta \mu_{Li} + \Delta \mu_{Ni} + 3\Delta \mu_O \le -9.1 eV/fu...(Li_N iO_3), \tag{11}$$

$$2\Delta\mu_{Li} + \Delta\mu_O \le -5.75 eV/fu...(Li_2O) \tag{12}$$

To prevent the emergence of single metal phases in LNO and LCO, the following boundaries were used:

$$\Delta \mu_{Li} \le E_{Li} \tag{13}$$

$$\Delta \mu_{Ni} \le E_{Ni} \tag{14}$$

$$\Delta \mu_O \le E_O \tag{15}$$

System	Crystal Structure	Formation enthalpy (eV)
Li ₂ O	Cubic	-5.75
Li_2O_2	Hexagonal	-5.84
$\rm Li_2NiO_2$	Trigonal	-8.76
Li_2NiO_3	Monoclinic	-9.10
Li_6CoO_4	Tetragonal	-20.62
NiO	Cubic	-2.89
CoO	Hexgaonal	-3.13
Co_3O_4	Cubic	-9.94

Table S5: Formation Enthalpies at 0 K used for stability diagram (from ref. $^1)$

Table S6: Chemical Potentials for points A-K in Fig 2 for LCO

Phase	Symbol	$\Delta \mu L i$	$\Delta \mu Co$	$\Delta \mu O$
Li ₂ O	A	0.00	-4.54	- 5.75
	B	-2.88	-4.09	0.00
$\rm Li_2O_2$	C	0.00	-1.12	-2.92
	D	-2.92	-4.04	0.00
CoO	E	-0.70	0.00	-3.13
	F	-3.83	-3.13	0.00
Co_3O_4	G	-1.99	0.00	-2.49
	H	-3.65	-3.31	0.00
$\rm Li_6CoO_4$	I	0.00	-6.70	-6.83
	J	-1.68	0.00	-2.64
	K	-2.73	-4.23	0.00

Phase	Symbol	$\Delta \mu L i$	$\Delta \mu Co$	$\Delta \mu O$
NiO	A	-0.32	0.00	-2.89
	B	-3.21	-2.89	0.00
Li ₂ NiO ₂	C	-2.66	0.00	-1.72
	D	-2.66	-3.44	0.00
Li ₂ NiO ₃	E	0.00	-0.10	-3.00
	F	-0.10	0.00	-3.10
	G	-3.00	-3.10	0.00

Table S7: Chemical Potentials for points A-G in Fig 2 for LNO $\,$

Phase	Symbol	$\Delta \mu Li$	$\Delta \mu Co$	$\Delta \mu O$
CoO	A	-0.70	0.00	-3.13
	B	-3.83	-0.31	0.00
Co ₃ O ₄	C	-1.99	0.00	-2.49
	D	-3.65	-0.33	0.00
$\rm Li_6CoO_4$	${f E}$	0.00	-0.67	-6.83
	F	-1.68	0.00	-2.64
	G	-2.73	-0.42	0.00
NiO	H	-0.32	0.00	-2.89
	I	-3.21	-2.60	0.00
Li ₂ NiO ₂	J	-2.66	0.00	-1.72
	K	-2.66	-3.10	0.00
Li ₂ NiO ₃	L	0.00	-0.09	-3.00
	M	-0.10	0.00	-3.10
	N	-3.00	-2.79	0.00

Table S8: Chemical Potentials for points A-N in Fig 2 for NC91 $\,$

References

 Hoang, K.; Johannes, M. D. Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations. *Journal of Materials Chemistry A* 2014, 2, 5224–5235.