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Experimental details 
Protonated monomer and oligomers of Phe2 are produced from solution using a nano electrospray ion source 

(nano-ESI), mass-selected by a quadrupole mass filter (Q1), and guided into a cold octupole ion trap 

maintained at T=6 K. The ions are trapped and cooled in the octupole by collisions with He buffer gas. Once 

cooled, the ions are interrogated by UV and IR laser pulses of 5-10 ns duration, delayed by 200 ns. The released 

ions are then detected with a second quadrupole mass spectrometer (Q2). In the single laser UV spectroscopy 

experiments Q2 was tuned in alternative cycles of measurements to m/z of a fragment or the parent ions to 

determine the relative UV photofragmentation yield. The cold trap was filled in and the UV laser fired at 20 

Hz repetition rate, while the IR optical parametric oscillator fired at 10 Hz.  

Double resonance IR-UV CIS uses vibrationally resolved transitions in UV photofragmentation spectra to 

label different conformers of cold ions. A pulse from an IR laser heats the corresponding conformer internally, 

causing an inhomogeneous broadening and a redshift of electronic transitions, which are monitored by a 

subsequent UV laser pulse. The IR-induced changes in UV absorption allow for measurements of two different 

types of spectra. 

An IR “gain” spectrum is measured by fixing the UV laser wavenumber to the red from the band origin, 

where absorption by cold ions is negligible, and scanning IR laser wavenumber. IR pre-excitation of any 

conformer results in an increase in UV fragmentation.  An IR gain spectrum thus reflects the IR transitions of 

all abundant conformers of the ion in a single IR wavenumber scan.  

An IR “depletion” spectrum is measured by fixing the UV laser wavenumber at an electronic transition that 

is specific to one conformer of the studied ion. IR pre-excitation of the same conformer results in the drop 

(depletion) of the UV-induced photofragmentation. Measuring this depletion as a function of IR wavelength 

generates an IR spectrum of this conformer only.  

L-Phe-L-Phe (≥98% purity, purchased from Bachem) was dissolved in water at a concentration of 1 mg/mL 

by sonicating the solution, heating it to 65 °C for 30 min, and gradually cooling it down to room temperature. 

Right before spraying, the solution was acidified with 0.2% of acetic acid. 

 

Details of Computational method 
During each step t of the generation process, the neural network (NN) takes the current structure (st) and its 

memory state as input. Utilizing this information, the NN proposes the next structure, which is then subjected 

to molecular dynamics (MD) simulations to refine the structure and obtain its energy. 

After the MD optimization, each new structure is assigned a score based on its energy and uniqueness. If the 

proposed structure has already been observed in previous steps, its score is set to 0. Otherwise, 𝑆𝑐𝑜𝑟𝑒(𝑠$%&) =

exp[−(𝐸(𝑠$%&) − 𝐸')/𝑘(𝜏]/	𝑍'	) , where 𝜏  - model temperature, 𝑘(  is the Boltzmann constant, 𝐸(𝑠$%&) 

represents the energy of the proposed structure, and 𝐸'  and 𝑍'	  are the normalized score and energy, 
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respectively. After the conformer set reaches a maximum size of 20, the Generalized Advantage Estimation is 

used to evaluate its advantage. 

In our work, the NN architecture consists of a multi-layer long short-term memory (LSTM) unit, which 

receives hidden states (ℎ$ , 𝑐$ ∈ 	ℝ𝑴;𝑴 = 128), and a structural vector (𝑠$ ∈ ℝ𝑵) containing torsion angles, 

relative ion positions (in spherical coordinates), Euler's angles for relative orientation, and a charge code 

indicating the charge state. 

The neural network components used in the architecture are as follows: 

1. 𝑎 = 𝐌𝐋𝐏𝑵,𝑴,𝑴(𝑠$), where 𝐌𝐋𝐏𝑵,𝑴,𝑴 represents a multiple-layer perceptron with dimensions 𝑵,𝑴,𝑴. 

2. 𝑏, ℎ$%&, 𝑐$%& = 𝐋𝐒𝐓𝐌𝑴(𝑎, ℎ$ , 𝑐$) 

3. 𝑉$ = 𝐌𝐋𝐏𝟐𝑴,𝟏(a,b): The critic network predicts the value function. 

4. 𝐴$ = 𝐌𝐋𝐏𝟐𝑴,𝟐𝑴,𝟐(𝑵/𝟏)(a,b): The actor network predicts the action probabilities. 

 

 

 

For clarity, the steps 1 and 2 were implemented and trained independently for both networks. 

The training process of the neural network involves optimizing the parameters using Proximal Policy 

Optimization. We used a linear decrease of the temperature parameter 𝜏 from 𝜏 = 2000 to 500K with a step 

size of 10K each epoch, and then held it constant until the advantage reaches a plateau. For all tasks involving 

the construction and training of neural networks, we employed the PyTorch package1. 
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During training, we utilized batches with a size of 5 different conformers, each with a randomly selected charge 

state and initial structure s0, but whith the same number of atoms. 

The molecular dynamics (MD) simulations were performed using the OpenMM API for Python2 [11], and 

Charmm 3.6 force fields for proteins3 [12]. The number of optimization steps for minimizing the structures 

predicted by the neural network were limited to 100, while the subsequent optimizations were unconstrained. 

The machine learning generation of the initial pool of low-energy conformers was performed using a sequential 

conformer NN searcher. This algorithm is based on Proximal Policy Optimization (PPO) reinforcement 

learning in the rigid rotor approximation4,5 [8,9]; the computations have been done using the in-house 

developed software suite. The DFT calculations were performed in Gaussian 16 package6 [13] using B3LYP 

exchange-correlation functional7 [14–16], 6-31G basis set with diffuse functions for heavy atoms and 

polarization functions for all atoms8 [17,18]. 

Typically, NN and MD training took about 30 GPU hours both for monomers and dimers of Phe2. DFT 

structural optimizations are more time consuming. It took, rough, 150 CPU per each of the 70 optimized 

structures. Finally, the frequency and free energy computations required almost 200 CPU and 500 CPU per 

each of the 30 selected monomer and dimer structures, respectively. 
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Figure S1. Mass spectrum of protonated Phe2 mono- and oligomers, formed in electrospray ionization 
and measured by low-resolution quadrupole MS (blue trace). The inserts show the 13C isotopic 
distribution of the respective peaks (black traces) measured with HR MS (Q-Exactive) and their fits 
(red vertical sticks) by combination of possible oligomers of the same m/z (see the labels above the 
inserts).  
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Figure S2. Abundance of the Phe2 monomer and oligomers relative to the most abundant oligomer 
(n=2; 100%), as derived from the mass spectra in Fig. S1. Note the highest abundance of the hexamer 
among the oligomers larger than the dimer.   
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Figure S3. Photofragment MS for protonated oligomers of Phe2. 
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Figure S4. Oligomer-selective UV fragmentation spectra of the 1:2 mixture of [3Phe2+H]+ and 
[6Phe2+2H]+2 oligomers of the same  m/z (see Fig S1), measured by detecting the [2Phe2+H]+ (red 
trace)  and [4Phe2+H]+ (blue trace) fragments, specific for the trimer and hexamer, respectively. 
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Figure S5. UV photo fragmentation spectra of singly protonated Ala-Phe (red), Phe2 (black) and Phe-
Ala dipeptides, demonstrating similarity in the redshifts of the band origins for the former two ions. 
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Figure S6. Averaged distance matrices (top) and their standard deviations (bottom) for [2Phe2+H]+ complex. 
From left to right: charge solvated form, zwitterionic and their differences. Specific groups are represented 
with two points: the first and second atoms (or the center position of the group if it consists of more than two 
atoms). One prominent observation is the pronounced structural diversity observed in the charge solvated form 
of Phe2. In the zwitterionic form, strong Coulomb interactions, which predominantly govern the complex 
assembly, cause a more compact and predictable orientation of the charged groups.  



S11 
 

Thermodynamical considerations 

 

 
EZPE, kcal/mol 

 

Fig. S7. The relationship between zero-point energy 𝐸!"#  and 𝑇 ⋅ 𝑆 (at T=298) for calculated conformers 
families of the singly protonated Phe2 dimers in the charge solvated (blue) and zwitterionic(red) forms. The 
the crosses indicate the mean values and the standard deviations of the corresponding data. 
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