## Effects of surface oxygen vacancy on $CO_2$ adsorption and its activation towards $C_2H_4$ using metal (Cu, Pd, CuPd) cluster-loaded TiO<sub>2</sub> catalysts: A first principles study

Sajjad Hussain, Lina Zhang, Zhengzheng Xie\*, Jianjun Yang, Qiuye Li\* National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China

\*To whom correspondence should be addressed. E-mail: xiezz@henu.edu.cn; qiuyeli@henu.edu.cn



Fig. S1: The optimized geometries of (a) TiO<sub>2</sub> (b) clean TiO<sub>2</sub>(101) facet (c) Cu<sub>8</sub> (d) Pd<sub>8</sub> (e) Cu<sub>4</sub>Pd<sub>4</sub>

(f)  $CuPd/TiO_2$ - $V_O$ , where one Pd occupies the  $V_{O_2}$  (g)  $Cu/TiO_2$  with and without oxygen vacancy and (h) Pd/TiO<sub>2</sub> with and without oxygen vacancy. The cyan, red, orange and gray represent Ti, O, Cu and Pd, respectively.



Fig. S2: The d-orbitals over (a)  $Cu_8$  (b)  $Pd_8$ / and (c)  $Cu_4Pd_4$  clusters.



**Fig. S3:** Results of the ab intio molecular dynamics (AIMD) simulation at 1000K showing the variation of the energy and temperature.



Fig. S4: The calculated TDOS and PDOS of (a) Cu/TiO\_2-V\_0, (b) Pd/TiO\_2-V\_0 and (c) CuPd/TiO\_2-V\_0.



**Fig. S5:** The insertion of CO molecules before the optimization at the (a) Cu-Cu sites of the Cu/ $TiO_2$ - $V_0$  (b) (i) Cu-Cu, (ii) Cu-Pd sites of the CuPd/ $TiO_2$ - $V_0$ , where cyan, red, orange and gray represent Ti, O, Cu and Pd, respectively. The pink and black balls represent the O and C atoms of the CO<sub>2</sub> molecules, respectively.



Fig. S6: The relation between adsorption energy of  $CO_2$  molecule and energy barrier of the ratedetermining step (RDS) during the C-C coupling reaction at the M/TiO<sub>2</sub>-V<sub>O</sub> (M= Cu, Pd, CuPd) interfaces.

Fig. S7: The reaction mechanism of C-C coupling on the  $M/TiO_2$  and  $M/TiO_2$ - $V_0$  (M= Cu, Pd, CuPd) catalysts.

\* + CO<sub>2</sub> 
$$\rightarrow$$
 CO<sub>2</sub>\*  

$$\frac{1}{2}H_{2} \rightarrow COOH*$$
COOH\*+  $\frac{1}{2}H_{2} \rightarrow H_{2}O + CO^{2}$ 
CO\* +CO  $\rightarrow OCCO^{2}$ 

Fig. S8: The hydrogenation of OCCO to  $C_2H_4$  on the M/TiO<sub>2</sub> and M/TiO<sub>2</sub>-V<sub>O</sub> (M= Cu, Pd, CuPd) catalysts.

$$\frac{1}{2} OCCO^{*+} \frac{1}{2} H_2 \rightarrow C_2 O_2 H^{*+} H_2 O$$

$$\frac{1}{C_2 O_2 H^{*+}} \frac{1}{2} H_2 \rightarrow C_2 O^{*+} H_2 O$$

$$\frac{1}{C_2 O_2 H^{*+}} \frac{1}{2} H_2 \rightarrow C_2 O H^{*+} H_2 O$$



Table S1: Zero-point energy (ZPE) and entropy (TS) corrections used to calculate free energies of

|                                  | Cu/TiO <sub>2</sub> |       |        |                      |       |                 |         | Pd/TiO <sub>2</sub> |        |                |       |       |  |  |
|----------------------------------|---------------------|-------|--------|----------------------|-------|-----------------|---------|---------------------|--------|----------------|-------|-------|--|--|
|                                  | Perfect             |       | Defect |                      | Тор   |                 | Perfect |                     | Defect |                | Тор   |       |  |  |
|                                  | ZPE                 | TS    | ZPE    | TS                   | ZPE   | TS              | ZPE     | TS                  | ZPE    | TS             | ZPE   | TS    |  |  |
| CO <sub>2</sub> *                | 0.307               | 0.532 | 0.293  | 0.500                | 0.292 | 0.694           | 0.313   | 0.595               | 0.295  | 0.523          | 0.298 | 0.523 |  |  |
| CO <sub>2</sub> H*               | 0.607               | 0.661 | 0.616  | 0.577                | 0.604 | 0.551           | 0.627   | 0.487               | 0.605  | 0.562          | 0.610 | 0.718 |  |  |
| CO*                              | 0.1811              | 0.373 | 0.193  | 0.315                | 0.182 | 0.373           | 0.195   | 0.501               | 0.194  | 0.301          | 0.186 | 0.355 |  |  |
| OCCO*                            | 0.363               | 0.753 | 0.433  | 0.729                | 0.372 | 0.886           | 0.409   | 0.761               | 0.410  | 0.719          | 0.400 | 0.575 |  |  |
| $C_2O_2H^*$                      |                     |       | 0.680  | 0.882                |       |                 | 0.746   | 0.791               | 0.728  | 0.776          | 0.714 | 0.655 |  |  |
| C <sub>2</sub> O*                |                     |       | 0.306  | 0.578                |       |                 | 0.319   | 0.592               | 0.309  | 0.457          | 0.307 | 0.529 |  |  |
| C <sub>2</sub> OH*               |                     |       | 0.516  | 0.414                |       |                 | 0.607   | 0.589               | 0.603  | 0.492          | 0.589 | 0.630 |  |  |
| $C_2OH_2*$                       |                     |       | 0.903  | 0.595                |       |                 | 0.857   | 0.537               | 0.905  | 0.550          | 0.889 | 0.746 |  |  |
| C <sub>2</sub> OH <sub>3</sub> * |                     |       | 1.228  | 0.690                |       |                 | 1.20    | 1.559               | 1.205  | 0.616          | 1.202 | 0.789 |  |  |
| C <sub>2</sub> OH <sub>4</sub> * |                     |       | 1.446  | 0.496                |       |                 | 1.510   | 0.846               | 1.390  | 0.629          | 1.503 | 0.714 |  |  |
| C <sub>2</sub> H <sub>3</sub> *  |                     |       |        |                      |       |                 | 1.068   | 0.472               |        |                | 1.08  | 0.542 |  |  |
| $C_2H_4*$                        |                     |       |        |                      |       |                 | 1.395   | 0.604               |        |                | 1.385 | 0.656 |  |  |
|                                  |                     |       | Cu     | uPd/TiO <sub>2</sub> |       | CO <sub>2</sub> |         | СО                  |        | H <sub>2</sub> |       |       |  |  |
|                                  | Perfect Defect Top  |       |        |                      |       |                 |         |                     |        |                |       |       |  |  |
|                                  | ZPE                 | TS    | ZPE    | TS                   | ZPE   | TS              | ZPE     | TS                  | ZPE    | TS             | ZPE   | TS    |  |  |
| $CO_2^*$                         | 0.324               | 0.507 | 0.438  | 0.503                | 0.290 | 0.636           | 0.308   | 0.396               | 0.087  | 0.166          | 0.270 | 0.400 |  |  |
| $\rm CO_2H^*$                    | 0.628               | 0.612 | 0.611  | 0.624                | 0.602 | 0.715           |         |                     |        |                |       |       |  |  |
| CO*                              | 0.199               | 0.265 | 0.191  | 0.363                | 0.186 | 0.472           |         |                     |        |                |       |       |  |  |
| OCCO*                            | 0.431               | 0.708 | 0.424  | 0.758                | 0.37  | 0.67            |         |                     |        |                |       |       |  |  |
| $C_2O_2H^*$                      | 0.735               | 0.785 | 0.745  | 0.761                |       |                 |         |                     |        |                |       |       |  |  |
| C <sub>2</sub> O*                | 0.311               | 0.544 | 0.331  | 0.508                |       |                 |         |                     |        |                |       |       |  |  |
| C <sub>2</sub> OH*               | 0.580               | 0.579 | 0.602  | 0.534                |       |                 |         |                     |        |                |       |       |  |  |

reactants, products, and reaction intermediates at reaction temperature 573 K.

| C <sub>2</sub> OH <sub>2</sub> * | 0.905 | 0.614 | 0.905 | 0.631 | <br> | <br> | <br> | <br> |
|----------------------------------|-------|-------|-------|-------|------|------|------|------|
| C <sub>2</sub> OH <sub>3</sub> * | 1.21  | 0.655 | 1.07  | 0.690 | <br> | <br> | <br> | <br> |
| C <sub>2</sub> OH <sub>4</sub> * | 1.53  | 0.73  | 1.42  | 0.697 | <br> | <br> | <br> | <br> |
| C <sub>2</sub> H <sub>3</sub> *  | 1.098 | 0.54  |       |       | <br> | <br> | <br> | <br> |
| C <sub>2</sub> H <sub>4</sub> *  | 1.38  | 0.66  |       |       | <br> | <br> | <br> | <br> |

**Table S2:** The calculated Gibbs free energies (G) and energy barriers ( $\Delta$ G) involved in hydrogenation of OCCO to C<sub>2</sub>H<sub>4</sub>. All energies have been calculated in unit of eV.

| Adsorbate                       | Pd/TiO <sub>2</sub> |      | CuPd/TiO <sub>2</sub> |      | Cu/TiO <sub>2</sub> -V <sub>0</sub> |      | Pd/TiO <sub>2</sub> -V <sub>O</sub> |      | CuPd/TiO <sub>2</sub> -V <sub>O</sub> |      | $(Pd)_{top}/TiO_2-V_O$ |      |
|---------------------------------|---------------------|------|-----------------------|------|-------------------------------------|------|-------------------------------------|------|---------------------------------------|------|------------------------|------|
|                                 | G                   | ΔG   | G                     | ΔG   | G                                   | ΔG   | G                                   | ΔG   | G                                     | ΔG   | G                      | ΔG   |
| CO <sub>2</sub> *               | -1.53               |      | -1.14                 |      | -1.91                               |      | -1.83                               |      | -1.69                                 |      | -1.22                  |      |
| CO <sub>2</sub> H*              | 0.82                | 2.35 | 0.28                  | 1.42 | 0.64                                | 2.55 | -0.22                               | 1.61 | 0.66                                  | 2.35 | -0.41                  | 0.81 |
| CO*                             | -0.93               |      | -1.13                 |      | 0.68                                | 0.04 | 0.086                               | 0.13 | -0.44                                 |      | -0.90                  |      |
| *COCO                           | -1.23               |      | 0.25                  | 1.38 | -1.76                               |      | -0.84                               |      | -1.45                                 |      | 0.35                   | 1.25 |
| *С2О2Н                          | -0.13               | 1.10 | 0.02                  |      | 0.74                                | 2.50 | 0.34                                | 1.18 | 0.32                                  | 1.77 | 0.25                   |      |
| *C20                            | -0.25               |      | -0.11                 |      | -0.45                               |      | -0.19                               |      | -0.40                                 |      | 0.28                   | 0.03 |
| *C <sub>2</sub> OH              | -0.74               |      | -1.12                 |      | -0.66                               |      | -1.44                               |      | -0.60                                 |      | -1.90                  |      |
| *C <sub>2</sub> OH <sub>2</sub> | -0.03               | 0.71 | -0.80                 | 0.32 | -1.28                               |      | -1.38                               | 0.06 | -1.16                                 |      | -1.54                  | 0.36 |
| *C <sub>2</sub> OH <sub>3</sub> | -1.11               |      | -0.50                 | 0.30 | -0.70                               | 0.58 | -0.43                               | 0.95 | -1.20                                 |      | 0.01                   | 1.55 |
| *C <sub>2</sub> OH <sub>4</sub> | 0.33                | 1.44 | -0.005                | 0.49 |                                     |      |                                     |      |                                       |      | -0.28                  |      |
| *C <sub>2</sub> H <sub>3</sub>  | -0.22               |      | 0.24                  | 0.24 |                                     |      |                                     |      |                                       |      | 0.304                  | 0.58 |
| *C <sub>2</sub> H <sub>4</sub>  | -0.65               |      | -0.77                 |      | -0.50                               | 0.20 | -1.80                               |      | -1.54                                 |      | -0.93                  |      |