Supplementary Information

First-Principles Study of CO₂ and H₂O Adsorption on the Anatase TiO₂(101) Surface: The Effect of Au Doping

Huan Zhang^a, Meijun Yin^a, Shuangli Du^{a,*}, Yitao Li^b, Jialiang Bai^a, Haonan Chai^a, Jun

Ren^c

^a College of Safety and Emergency Management Engineering, Taiyuan University of Technology,

Taiyuan, 030024, China

^b College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China

^c College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan

030024, China

* Corresponding author, email: <u>dushuangli@tyut.edu.cn</u>

Fig. S1 Truncation energy convergence test results

Table S1

Surface	Esur/(J/m ²)
TiO ₂	0.56
[45]	0.61

Surface energy of $TiO_2(101)$ surface system.

The surface energy of TiO₂(101) surface system was calculated according to the formula S1:

$$E_{surf} = \frac{1}{2A} \left(E_{total}^{unrelax} - N * E_{bulk} \right) + \frac{1}{A} \left(E_{total}^{relax} - E_{total}^{unrelax} \right)$$
(S1)

Here, E_{surf} represents the surface energy of the system, $E_{total}^{unrelax}$ and E_{total}^{relax} represent the energy of the system before and after relaxation, N represents the number of single cells in the system, and E_{bulk} represents the energy of single cells. The calculated surface energy of the TiO₂(101) surface system is 0.56 J/m², as shown in Table S5. Due to the different calculation details, the final calculation results are slightly different from the previous research results[45], but the overall results are similar, indicating that the selected TiO₂(101) surface is the most stable surface.

Table S2

Adsorption energy (E_{ads}, kcal/mol), C-O bond length(Å), average bond length(Å), bond angle(°)

adsorption site	$E_{\rm ads}$	chemical b	chemical bond length		bond angle	d
I -11.1	11.1	C-01	1.170	1 176	177.2	2 6 2 5
	C-O2	1.181	1.170	1//.3	2.023	
II -9.7	0.7	C-O1	1.171	1 176	170.1	2 620
	C-O2	1.181	1.170	1/9.1	2.029	
III	7 9	C-01	1.170	1 177	178.5	2614
	-7.8	C-O2	1.183	1.1//		2.014

and adsorption distance (d, Å) of CO₂ on TiO₂(101) surface.

Data from Ref.[49].

Table S3

Adsorption energy (E_{ads} , kcal/mol), H-O bond length (Å), average bond length (Å), distance between O and surface Ti atom in H₂O (d1, Å) and distance between H and surface O atom (d2, Å)

adsorption site	$E_{\rm ads}$	chemical bond length		average bond length	dl	<i>d2</i>
1 -19	10.7	H1-O	0.988	0.988		2 201
	-19.7	Н2-О	0.988		-	2.201
2 -1	10.1	H1-O	0.982	0.982		
	-19.1	Н2-О	0.982		-	-

of H₂O on TiO₂(101) surface.

Data from Ref.[50].

Table S4

Charge transfer of CO₂ adsorption on TiO₂(101) surface at physical adsorption sites.

Atom B		Deferre	After				
		Belore	Short-bridge	$\Delta q/e$	Long-bridge	$\Delta q/e$	
С		2.042	1.979	-0.063	2.093	0.051	
0	01	-1.022	-0.989	0.033	-1.078	-0.056	
0 02	O2	-1.02	-1	0.02	-1.002	0.018	
CO_2		0		-0.01		0.013	

When adsorbed at the short-bridge site, the C atom gains electrons, the O atom loses electrons, resulting in a net electron gain. Charge moves from catalyst surface to CO_2 molecule. The charge at

the long-bridge site is transferred from the CO₂ molecule to catalyst surface.

Table S5

Charge transfer of CO_2 adsorption on Au-TiO₂(101) surface at physical adsorption sites.

Atom		Dafara	After						
		Belore	Short-bridge	$\Delta q/e$	Long-bridge	$\Delta q/e$	Au-site	$\Delta q/e$	
С		2.042	2.092	0.05	2.11	0.068	2.101	0.059	
0	01	-1.022	-1.088	-0.066	-1.085	-0.063	-1.047	-0.025	
0	02	-1.02	-0.986	0.034	-1.045	-0.025	-1.063	-0.043	
CO_2		0		0.018		-0.02		-0.009	

It can be found that the direction of electron movement at the short-bridge site and the long-

bridge site is reversed after the doping of Au, and the amount of charge transfer increased. For the newly added sites, at the Au site, the C atom gains electrons, the O atom loses electrons, resulting in an overall increase in charge, with charge transferring from catalyst surface to the CO_2 molecule. The doping of Au atoms increases the amount of charge transfer at the physical adsorption sites and promotes the adsorption of CO_2 molecules on catalyst surface.