Electronic Supplementary Information for

Tunable valley polarization and high Curie temperature in twodimensional GdF₂/WSe₂ van der Waals heterojunction

Xu Zhang, Kai Zhang, Yadong Zhu*, Baozeng Zhou*, and Xiaocha Wang*

Tianjin Key Laboratory of Film Electronic & Communicate devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

*Corresponding Authors

yadong_zhu@163.com (Yadong Zhu)

baozeng@tju.edu.cn (Baozeng Zhou)

wangxc@email.tjut.edu.cn (Xiaocha Wang)

Fig. S1 The band structure of GdF_2 when (a) no strain is applied, (b) tensile strain and

(c) compressive strain are applied.

Fig. S2 The band structure of WSe₂ when (a) no strain is applied, (b) tensile strain

and (c) compressive strain are applied.

Fig. S3 The band structure of GdF_2 (a) without external electric field, (b) with

positive electric field and (c) negative electric field.

Fig. S4 The band structure of WSe_2 (a) without external electric field, (b) with

positive electric field and (c) negative electric field.

Table S1. In Model1-6, the total energy	(eV) of the	GdF_2/WSe_2	heterojunction,	and the
---	-------------	---------------	-----------------	---------

	E_{GdF_2/WSe_2}	E_{GdF_2}	E _{WSe2}
Model-1	-50.093901	-27.652289	-21.641195
Model-2	-50.165071	/	/
Model-3	-50.157111	/	/
Model-4	-50.161071	/	/
Model-5	-50.1607	/	/
Model-6	-50.094409	/	/

energies of the ML GdF_2 and WSe_2 , respectively.

Fig. S5 Variation of the total free energy during the 3000 fs AIMD simulation of the

GdF₂/WSe₂ supercell at 300K.

Fig. S6 The band structures of GdF_2/WSe_2 calculated by the (a) PBE+U and (b) HSE06.

Fig. S7 Oribital resolved MAE of Gd-p in the GdF₂/WSe₂ heterojunction at (a) no strain, (b) -2% stain, (c) -4% strain and (d) -6% strain.

Fig. S8 Curie temperature of the monolayer (a) GdF₂. The (b) AFM and (c) FM states of the GdF₂: red arrow shows the direction of spin-up and the blue arrow shows the direction of spin-down.

Fig. S9 (a) The *T*c of CrI₃. The *T*c of GdF₂/WSe₂ when (b) no strain is applied, (c) –6% strain and (d) 6% strain are applied.