Supporting Information For

"Extending the Chevrel-type superatoms to nitrogen family"

Ziyao Yang¹, Ning Du¹, Hongshan Chen^{1*}

¹ College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

Fig. S1. Optimized stable structures of the neutral substitutions with low symmetry.

Fig. S2. The structures are snapshots at steps with smallest energies (the upper peaks at Fig. 3) in the last 2 ps, which correspond the most deformed geometries close the end of the MD simulations.

^{*}E-mail:chenhs@nwnu.edu.cn

Fig. S3. Valence molecular orbitals of Co₆S₈ and Co₆As₈ cores with D_{2d} symmetry.

Fig. S4. Total and partial DOS (FWHM= 0.07) of Co₆S₈ and Co₆As₈ cores with D_{2d} symmetry.

Fig. S5. Total and partial DOS (FWHM= 0.03) of the O_h and D_{3d} structures of $[Ni_6P_8(CN)_6]^{2-}$.

	E_b					
	B3LYP	PBE0	CCSD	B3LYP	PBE0	CCSD
$\mathrm{Co}_6\mathrm{S_8^O_h}$	-41.63	-43.98	-37.63	0.55	0.67	2.65
Co_6S_8 - D_{3d}	-36.91	-39.00	-33.43	1.82	2.24	5.34
Co_6P_8 - D_{2d}	-34.68	-35.89	-29.19	1.41	1.07	5.29
Co ₆ As ₈ -D _{2d}	-30.52	-31.64	-27.66	1.65	1.99	4.09
Rh ₆ P ₈ -O _h	-41.92	-45.14	-35.70	1.49	1.80	4.84
Ni_6P_8 - D_{3d}	-39.01	-41.20	-33.38	2.15	2.46	4.54
$Pt_6Sb_8-D_{3d}$	-42.60	-46.36	-44.38	1.42	1.67	5.90
$Co_6S_8(CO)_6\text{-}O_h$	-47.64	-51.48	-44.83	3.29	3.80	9.83
$[Co_6As_8(CN)_6]^{2-}-O_h$	-58.81	-61.09	-55.16	1.48	1.81	2.48
$[Ni_6P_8(CN)_6]^{2-}-D_{3d}$	-65.59	-68.30	-59.68	1.88	2.25	2.75

 Table S1. Comparison of the B3LYP/Def2-TZVP, PBE0/Def2-TZVP and CCSD/Def2-TZVP results.

	Symmetry	$R_{ m M-M}$	$R_{ m M-Q}$	$R_{ m Q-Q}$	$R_{ m M-C}$	E_b	Gap
$[Co_6P_8(CN)_6]^{2-}$	C_2	2.44~2.85	2.09~2.75	2.22~3.54	1.87~1.90	-63.37	1.94
$Co_6P_8(CN)_6$	C_2	2.60~2.89	2.11~2.35	2.19~3.02	1.84~1.86	-55.67	1.78
$[Co_6As_8(CN)_6]^{2-}$	C_{2h}	2.40/2.52/2.56	2.26~2.48	2.46~3.68	1.88/1.90	-59.99	1.53
$[Co_6As_8(CN)_6]^{2-}$	O_h	2.50	2.34	3.30	1.88	-58.81	1.49
Co ₆ As ₈ (CN) ₆	D_{4h}	2.43/2.59	2.32/2.39	3.17/3.38	1.87/1.88	-51.23	1.46
$[Co_6Sb_8(CN)_6]^{2-}$	C_{2h}	2.49~2.63	2.43~2.64	2.84~3.92	1.88/1.91	-56.52	1.44
$[Rh_6P_8(CN)_6]^{2-}$	C_2	2.71~2.90	2.19~2.86	2.21~3.85	1.99~2.02	-74.42	1.80
$[Rh_6P_8(CN)_6]^{2-}$	O_h	2.68	2.41	3.39	2.02	-70.68	1.67
Rh ₆ P ₈ (CN) ₆	D_{4h}	2.64/2.74	2.39/2.42	3.30/3.42	2.00/2.02	-61.82	1.04
$[Rh_{6}As_{8}(CN)_{6}]^{2-}$	C_2	2.77~2.89	2.30~2.83	2.45~3.99	1.98~2.03	-71.14	1.81
$[Rh_6As_8(CN)_6]^{2-}$	$\mathbf{O}_{\mathbf{h}}$	2.72	2.50	3.52	2.01	-69.38	1.58
$[Rh_6Sb_8(CN)_6]^{2-}$	C_{2h}	2.73/2.82/2.94	2.56~2.77	2.91~3.96	1.99/2.02	-68.11	1.42
$[Rh_6Sb_8(CN)_6]^{2-}$	O_h	2.81	2.65	3.75	2.00	-67.80	1.36
$[Ir_6P_8(CN)_6]^{2-}$	C_2	2.73~2.92	2.21~2.98	2.17~3.89	1.99/2.05	-83.90	1.82
$[Ir_6P_8(CN)_6]^{2-}$	O_h	2.70	2.44	3.44	2.02	-81.93	2.24
$Ir_6P_8(CN)_6$	D_{4h}	2.68/2.76	2.42/2.45	3.36/3.46	2.01/2.03	-73.00	0.94
$[Ir_6As_8(CN)_6]^{2-}$	\mathbf{O}_{h}	2.75	2.53	3.57	2.01	-80.07	2.13
$[Ir_6Sb_8(CN)_6]^{2-}$	O_h	2.83	2.69	3.80	2.01	-77.90	1.86

Table S2. Symmetries, bond lengths, binding energy E_b (eV) and HOMO-LUMO gap of $[M_6Q_8(CN)_6]^{0/2-}$ (M=Co, Rh, Ir; Q=P, As, Sb) calculated using B3LYP/Def2-TZVP.

	Symmetry	R _{M-M}	$R_{ m M-Q}$	R _{Q-Q}	R _{M-C}	E_b	Gap
$[Ni_6P_8(CN)_6]^{2-}$	D _{3d}	2.67	2.22/2.23	2.25/3.30	1.90	-65.59	1.88
Ni ₆ P ₈ (CN) ₆	D _{3d}	2.66	2.24/2.28	2.22/3.11	1.87	-56.86	1.45
$[Ni_6As_8(CN)_6]^{2-}$	D_{3d}	2.76	2.32/2.34	2.49/3.58	1.90	-61.84	1.81
$[Ni_6Sb_8(CN)_6]^{2-}$	D_{2d}	2.71/2.81	2.55/2.56	3.07/3.61	1.85	-59.98	2.35
$[Ni_6Sb_8(CN)_6]^{2-}$	D_3	2.70/2.86	2.53/2.55/2.56	3.03/3.62/3.99	1.85	-59.94	2.41
$[Pd_6P_8(CN)_6]^{2-}$	\mathbf{D}_{3d}	2.89	2.38/2.39	2.27/3.40	2.05	-64.14	1.50
$Pd_6P_8(CN)_6$	D_{3d}	2.91	2.37/2.49	2.23/3.23	2.01	-55.74	1.63
$[Pd_6As_8(CN)_6]^{2-}$	\mathbf{D}_{3d}	2.98	2.48/2.49	2.49/3.65	2.04	-61.35	1.53
$[Pd_6Sb_8(CN)_6]^{2-}$	D_{3d}	3.14	2.64/2.66	2.86/4.03	2.04	-59.11	1.52
$[Pt_6P_8(CN)_6]^{2-}$	D_3	2.80/3.06	2.34/2.43/2.44	2.30/3.47	2.01	-74.48	1.91
$Pt_6P_8(CN)_6$	D_3	2.84/3.11	2.35/2.40/2.51	2.26/3.33	1.99	-66.28	1.77
$[Pt_{6}As_{8}(CN)_{6}]^{2-}$	D_3	2.84/3.23	2.46/2.52/2.56	2.54/3.76	2.01	-71.48	1.97
$[Pt_6Sb_8(CN)_6]^{2-}$	D_3	3.03/3.45	2.65/2.70	2.91/4.15	2.01	-69.50	1.92

Table S3. Symmetries, bond lengths, binding energy E_b (eV) and HOMO-LUMO gap of $[M_6Q_8(CN)_6]^{0/2-}$ (M=Ni, Pd, Pt; Q=P, As, Sb) calculated using B3LYP/Def2-TZVP.