Supporting Information

Structure searching and phase relations in MnN up to 50 GPa: a DFT study

Nursultan E. Sagatov^{*a}, Aitolkyn S. Omarkhan^b, Assyl-Dastan B. Bazarbek^{*b}, Abdirash T. Akilbekov^b, Dinara N. Sagatova^a

^a Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Science, Novosibirsk 630090, Russian Federation

^b Department of Physics and Technics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan

*Corresponding authors: Nursultan E. Sagatov (<u>n.e.sagatov@gmail.com</u>), Assyl-Dastan B. Bazarbek (<u>asyl.bazarbek.92@mail.ru</u>)

Figure S1. The considered initial antiferromagnetic configurations for the predicted MnN polymorphs.

Figure S2. (a) The relaxed structure of MnN-*I*4/*mcm* and the last snapshots from the MD simulations at 30 GPa and 300 and 2000 K. (b) Calculated energy and volume as a function of simulation time at 30 GPa and 300 and 2000 K.

Figure S3. (a) The relaxed structure of $MnN-P6_3/mmc$ and the last snapshots from the MD simulations at 30 GPa and 300 and 1000 K. (b) Calculated energy and volume as a function of simulation time at 30 GPa and 300 and 2000 K.

Figure S4. (a) The relaxed structure of MnN-*Pnma* and the last snapshots from the MD simulations at 50 GPa and 300 and 2000 K. (b) Calculated energy and volume as a function of simulation time at 30 GPa and 300 and 2000 K.

Polymorph	Magnetic state	Enthalpy (eV/f.u.)	$\Delta H (eV/f.u.)$		
	afm	-8.74027	0.07111		
P6 ₃ /mmc	fm	-8.81138	0		
	nm	-7.82395	0.98743		
Pnma	fm	-8.81088	0.00050		
	nm	-7.82699	0.98439		
I4/mmm	afm	-8.74027	0.07111		
	nm	-7.82395	0.98743		
Fm3m	fm	-9.08220	-0.27081		
	nm	-7.09535	1.71603		
F43m	afm	-7.51206	1.29932		
	fm	-7.41699	1.39439		
	nm	-6.87959	1.93179		

Table S1. Calculated enthalpies of MnN polymorphs with $U_{eff} = 3.9$ eV at 58 GPa. Relative enthalpies ΔH are normalized to the enthalpy of $P6_3/mmc$.

*It is worth noting that the study of phase relations using the DFT+U method is invalid, since for each polymorph it is necessary to select its own parameter U_{eff} and the energies obtained with different U cannot be compared (as mentioned in the VASP manual). Here we perform DFT+U calculations just to show the invalidity of the obtained enthalpy relations with U correction.

Table S2. Calculated elastic constants C_{ij} (in GPa) of MnN polymorphs at various pressures (GPa).

Phase	Pressure	<i>C</i> ₁₁	<i>C</i> ₁₂	<i>C</i> ₁₃	C_{22}	<i>C</i> ₂₃	<i>C</i> ₃₃	C ₄₄	C ₅₅	C ₆₆
I4/mmm	0	164.2	56.2	46.1	164.2	46.1	170.6	42.3	42.3	48.1
	10	424.6	159.4	108.6	423.9	108.6	448	103.6	103.6	132.5
	20	487.1	220.3	146.1	487	146.1	591.6	100.2	100.2	194
	30	541.9	274.6	149.7	542.2	149.7	703.7	95.4	95.4	238.8
	40	577.2	307.9	163.6	577.6	163.6	789.2	87.6	87.6	259.6
$F\overline{4}3m$	0	303.3	207.6	207.6	303.3	207.6	303.3	31.2	31.2	31.2
	5	300.9	220.3	220.3	300.9	220.3	300.9	14.1	14.1	14.1
P6 ₃ /mmc	5	458.6	167.0	148.3	461.7	148.3	668.0	157.3	157.3	146.0
	10	479.0	187.4	168.2	483.4	168.2	705.1	172.8	172.8	146.9
	20	513.0	221.9	209.6	520.1	209.6	791.1	201.4	201.4	148.7
	30	505.4	255	247.6	527.8	247.6	873.6	228.7	228.7	143.0
	40	375.5	218.7	429.4	366.4	429.4	940.4	251.7	251.8	97.0
Pnma	40	906.1	421.3	480.7	660.6	300.1	661.6	194.7	260.0	281.8
	50	986.1	437.7	499.3	780.0	382.4	788.1	203.2	280.0	304.5

For cubic crystals:

 $C_{11} > 0$, $C_{44} > 0$, $C_{11} > |C_{12}|$, $(C_{11} + 2C_{12}) > 0$

For hexagonal crystals:

$$C_{44} > 0$$
, $C_{11} > |C_{12}|$, $(C_{11} + 2C_{12})C_{33} - 2C_{13}^2 > 0$

For tetragonal crystals:

 $C_{11} > 0, \qquad C_{33} > 0, \qquad C_{44} > 0, \qquad C_{66} > 0,$

 $(C_{11} - C_{12}) > 0$, $(C_{11} + C_{33} - 2C_{13}) > 0$, $[2(C_{11} + C_{12}) + C_{33} + 4C_{13}] > 0$ For orthorhombic crystals:

$$\begin{split} & C_{11} > 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0, \quad C_{66} > 0, \\ & [C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0, \quad (C_{11} + C_{22} - 2C_{12}) > 0, \\ & (C_{11} + C_{33} - 2C_{13}) > 0, \quad (C_{22} + C_{33} - 2C_{23}) > 0 \end{split}$$