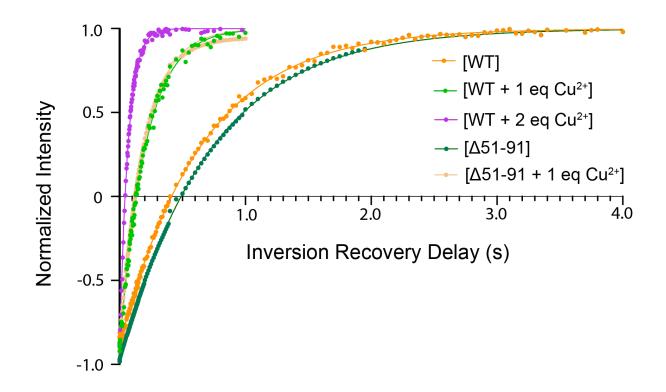
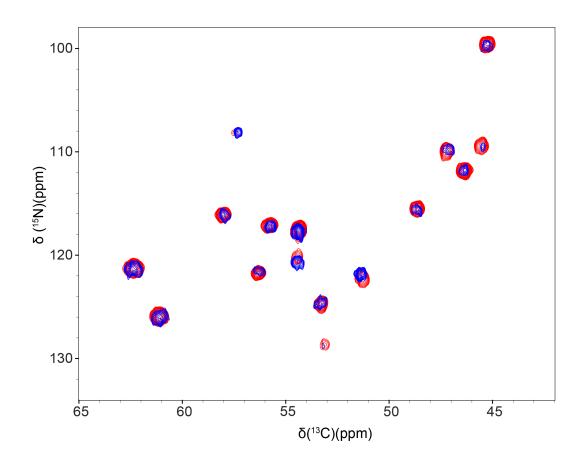
Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024


Supplementary Information

Copper binding alters the core structure of amyloid fibrils formed by Y145Stop human prion protein


Vidhyalakshmi Sridharan,^a Tara George,^a Daniel W. Conroy,^a Zach Shaffer,^a Witold K. Surewicz^b and Christopher P. Jaroniec^{a*}

^a Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States

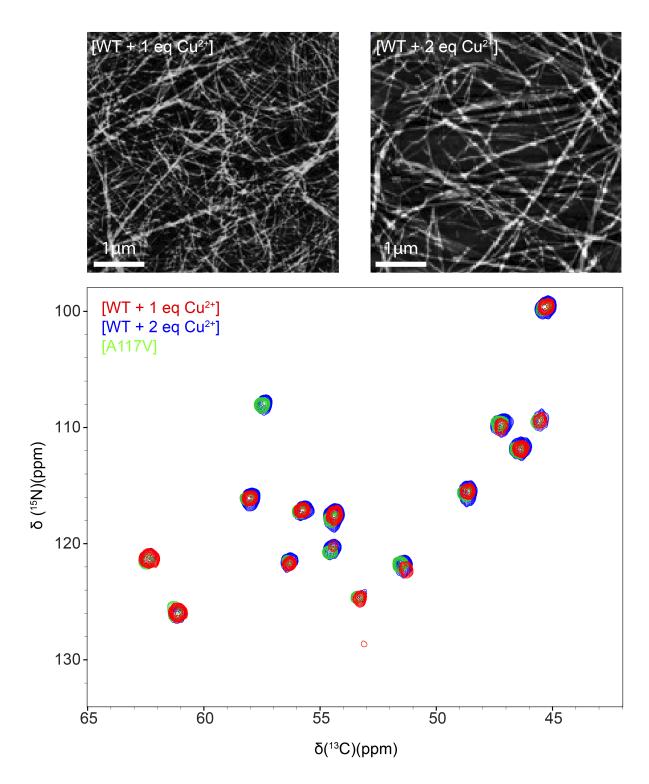

^b Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States *E-mail: jaroniec.1@osu.edu

Fig. S1. Measurements of bulk amide ¹H T₁ relaxation time constants for amyloid fibrils formed by WT and Δ 51-91 huPrP23-144 containing different amounts of bound Cu²⁺ as indicated in the inset. The ¹H T₁ values extracted from the data were as follows, WT: 652 ± 6 ms, WT + 1 eq Cu²⁺: 204 ± 4 ms, WT + 2 eq Cu²⁺: 66 ± 1 ms, Δ 51-91: 760 ± 4 ms, Δ 51-91 + 1 eq Cu²⁺: 185 ± 3 ms.

Fig. S2. Comparison of 2D ${}^{15}N{}^{-13}C\alpha$ solid-state NMR spectra recorded for two independent preparations of amyloid fibrils formed by huPrP23-144 containing one molar equivalent of bound Cu²⁺, illustrating the high degree of sample reproducibility. For experimental parameters see main text and Fig. 3 caption.

Fig. S3. AFM images (top) and 2D ¹⁵N-¹³C α solid-state NMR spectra (bottom) of fibrils formed by huPrP23-144 containing two molar equivalents of bound Cu²⁺ (blue contours). The NMR spectra are overlaid with corresponding spectra of fibrils formed by huPrP23-144 containing one equivalent of bound Cu²⁺ (red contours) and A117V mutant of huPrP23-144 (green contours). For experimental parameters see main text and Fig. 3 caption.