
Supplemental Materials

1. Details of the DFT Setup

  The density functional theory DFT is set up for self-consistent field calculations with an energy 

convergence criterion of 1 × 10-6 eV/atom. The Monkhorst-Pack method is used to sample points in 

the Brillouin zone, and the structural relaxation and static calculations are performed using a k-point 

mesh of 3×3×3. The k-point sampling distance is set to 0.03 A-1, and the number of empty bands is 

three times the number of valence bands to ensure convergence of the refractive indices and octave 

coefficients.

2. Details of the MD Setup

  The molecular dynamics simulation was carried out in the LAMMPS program and energy 

minimization was performed first to obtain the optimized structure. Subsequently, the NVT 

ensemble was first used to stabilize the temperature of the system at 310 K, then the NPT ensemble 

was selected to stabilize the pressure of the system at 1 atm, and finally the NVT ensemble was used 

to equilibrate the system at 310 K. The amorphous structure of the structure with complete chirp 

was obtained. This equilibrated conformation is used as the starting structure for subsequent 

material property calculations. Periodic boundary conditions were used throughout the simulation. 

Throughout the simulations, The L-J cut-off was set to 10Å and the Coulomb cut-off was set to 12Å 

. The simulation time step is 1 fs. The molecular force field is the CVFF force field, which provides 

a more accurate description of the structure and properties of the condensed state over a wide range.

3. Scattering-Absorption Model Setup Details

  The PML is an artificial absorption layer used in numerical methods to truncate the computational 

domain to model open boundary problems. In this layer, electromagnetic waves are completely 

absorbed to avoid their return as reflections. This sets one of the boundary conditions for solving 

the model. In contrast, the scattering boundary marks the boundary of the space in which the medium 

and particles are located and defines the region in which the light extinction is calculated.

  To solve the scattered field model, the background plane wave is set to propagate in the positive 

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024



direction along the y-axis and the electric field is polarized along the z-axis. The default boundary 

condition is a perfect electrical conductor applied to all external boundaries, including those 

perpendicular to the direction of polarization of the background electric field. The PEC (Perfect 

Electrical Conductor) symmetry plane is placed on the boundary perpendicular to the background 

E-field, and the Perfect Magnetic Conductor PMC (Perfect Magnetic Conductor) is placed on the 

boundary in the parallel direction. Therefore, the symmetry plane requires the addition of a perfect 

electric conductor PEC plane and a perfect magnetic conductor PMC plane. Where the X-Y plane 

is defined as the PEC plane and the Y-Z plane is defined as the PMC plane.

In the next step, the physical field was set up for the study. The model entailed solving for a 

fluctuating electromagnetic field, so a background electric field (𝐸0) was added. It was defined as 

moving in the y-direction, so the electric field was polarised along the z-axis, which is the longest 

axis of the particle. The polarisation of the particle is different when its position relative to the 

electric field changes. The electric field is defined by equation (S1).
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where c is the speed of light, 𝜀0 is the vacuum permittivity, and 𝜀𝑟𝑎𝑣 is the average relative 

permittivity of the selected material. In order to direct the wave in the negative y-axis direction, the 

𝐸𝑏 vector is set to (S2).
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where κ is the wave propagation constant of the material.

  The model is fine-meshed for the AuNP and PDA regions with a maximum cell size of 42.5 nm, 

a minimum cell size of 0.425 nm, a growth rate of 1.3, and a curvature factor of 0.2. The maximum 

size of the rest of the organized solution domain is set to 117 nm, the minimum cell size is set to 8.5 

nm, the maximum cell growth rate is set to 1.4, and the curvature factor is set to 0.4. Appendix 

Figure S1 shows the mesh quality distribution, the closer the value is to 1 (the redder the color) 

represents the better the mesh quality, as can be seen from the figure, the vast majority of the small 

mesh quality is 1.



Figure S1 The mesh distribution of the scattering-absorption model. 

4. Detail of tumor tissue photothermal therapy model

The tumor tissue region is finely meshed, with the maximum cell size set to 0.51 mm, the 

minimum cell size to 0.0051, the growth rate to 1.3, and the curvature factor to 0.2. The maximum 

size of the rest of the tissue solution domain is set to 1.4 mm, the minimum cell size to 0.102 mm, 

the maximum cell growth rate to 1.4, and the curvature factor to 0.4. Figure S2 shows the mesh 

quality distribution graph, the closer the value is to 1 (the redder the color is) represents the better 

quality of meshing, from the figure it can be seen that the mesh quality of the tumor region is almost 

1.



 Figure S2 Multi-Organizational Model Grid Quality Distribution

As a miniature source of thermal energy within tumors, gold nanoparticles can achieve high 

absorption while maintaining a low scattering coefficient, i.e., effective absorption at relatively low 

irradiance levels 1. In absorption-dominated media, incident light propagation is absorbed before it 

is significantly affected by scattering, and taking this into account, the Beer-Lambert law is used to 

calculate light absorption. Light intensity simulation using the Beer-Lambert law. For light intensity, 

this law can be written in differential form：                              

where I is the light intensity, z is the coordinate along the beam direction, and α(T) is the 

temperature dependent absorption coefficient of the material. Since the temperature varies with 

space and time, a controlled partial differential equation must be solved for the temperature 

distribution within the material:

∂𝐼
∂𝑧

= 𝛼(𝑇)𝐼 (S1)

𝜌𝐶𝑃
∂𝑇
∂𝑡

‒ ∇ ∙ (𝑘∇𝑇) = 𝑄 = 𝛼(𝑇)𝐼 (S2)



where the heat source term is equal to the absorbed light.

The classical Pennes biological heat transfer equation 2 has been widely used to model heat 

transfer problems in biological tissues. In the case of uniform distribution of heat generated by blood 

and metabolism, the equation can be expressed as:
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Where the first term on the left is the heat conduction term, the second term is the general heat 

conduction term, and the first term on the right is the blood perfusion term. Where, ρ represents the 

tissue density, Cp represents the specific heat capacity of biological tissues, T represents the 

temperature of tissues, k represents the thermal conductivity of tissues, ωb represents the blood 

perfusion rate of biological tissues, ρb represents the density of blood, Cpb represents the specific 

heat capacity of blood, Tb represents the temperature of blood, Qmet represents the metabolic heat 

production rate of tissues,  and t represents the calculation time. 

Although the Pennes equation invokes the blood perfusion term to simplify the analysis and 

solution of the biological tissue heat transfer problem, its flexible application can solve most of the 

biological heat transfer problems, and it has become a widely used biological heat transfer model in 

biomedical fields at home and abroad.

  In order to better describe the ablation of the tumor and the damage of the healthy tissue, the 

Arrhenius model was applied to analyze the thermal damage of the tissue, which is expressed as 

follows 3:
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where Ea and A are the activation energy and frequency factor, respectively. R is the gas constant, 

equal to 8.314 J/(mol∙K), and T is the absolute temperature of the tissue. Ω is the rate of thermal 

damage. If Ω is greater than 1, the tissue is considered to be permanently damaged.

  The Arrhenius damage integral defines thermal damage by the cumulative energy of the medium 

(biological tissue) over time4. Although this is a quantitative metric, it only represents permanent 

thermal damage to biological tissue. In particular, permanent thermal damage as determined by the 



Arrhenius damage integral does not include cell biological apoptosis, which includes apoptosis, 

necrosis, and charring. Cell death can manifest itself in various forms such as apoptosis, necrosis, 

and autophagy. 

5. Optical property results

Figure S3 Total energy of PDA monomer

The real part ε1 and the imaginary part ε2 of the dielectric function of the PDA are shown in 

the Figure S4.

 

Figure S4 Dielectric function results



6. Structural analysis

The equilibrium structure of AuNP@PDA composite nanoparticles obtained from molecular 

dynamics simulations at 310 K temperature is shown in Figure S5.

Figure S5 AuNP@PDA schematic diagram of the balanced structure

Table S1 lists the energies of the AuNP@PDA complex and the PDA system.

Table S1 Energy of AuNP@PDA and PDA

Energy (kcal/mol) AuNP@PDA PDA

Van der Waals effect -355856.7 -2289.8

Electrostatic interaction -9000.1 -8364.5

Kinetic energy 12988.5 6111.0

Potential energy -328585.5 24743.5

Total energy -315597.0 30854.6

The binding energy between PDA and AuNP was obtained by calculating the energy of each 

component of AuNP@PDA composite nanoparticles through Eqs. (S7).

(S7)𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑇𝑜𝑡𝑎𝑙 ‒ (𝐸𝐴𝑢𝑁𝑃 + 𝐸𝑃𝐷𝐴)

Table S2 lists the binding energies of the AuNP@PDA complexes at 310 K temperature.

Table S2 Binding energy of AuNP@PDA

Energy (kcal/mol) AuNP@PDA

PDA 30166.2



AuNP -346846.6

Total energy -328585.6

binding energy -11905.2

The PDA-PDA and Au-Au radial distribution functions for the final equilibrium structure of the 

AuNP@PDA composites simulated by molecular dynamics at a temperature of 310 K are shown in 

Figure S6 (a) and (c), respectively, where Figure S6 (b) is the radial distribution function of Au-Au 

for the 6 nm bare AuNP, and Figure S6 (d) is the pure PDA system obtained by the same method 

for the radial distribution function of PDA-PDA. The Au-Au correlation function of AuNP, as 

shown in Figure S6 (b), shows several sharp and regular peaks within 20 Å, which corresponds to 

the periodically arranged Au atoms in AuNP. In contrast, the Au-Au correlation function of 

AuNP@PDA composite nanoparticles (Figure S6 (a)) has similar peak locations within 20 Å as 

bare AuNP, but with reduced sharpness and intensity. As shown in Figure S6 (d), the radial 

distribution function of pure PDA shows several characteristic correlation peaks only in the region 

below 5 A, apparently showing the amorphous structure characteristic of short-range order but long-

range disorder. The location of correlation peaks in the radial distribution function (Figure S6 (c)) 

of PDA-PDA of AuNP@PDA composites is the same as that of the pure PDA system, but with a 

significantly higher intensity, indicating that the overall trend of PDA of the composites is similar 

to that of the pure PDA system, but the degree of polymerization is different, which is mainly due 

to the change of PDA molecules near the surface of AuNP, which makes the polymerization between 

PDAs more compact. The above results show that after the formation of AuNP@PDA 

nanocomposite system with PDA, the Au nanoparticles did not change the general characteristics 

of the periodic arrangement of their internal atoms, but the surface Au atomic layer was completely 

transformed into an amorphous state, and the periodicity of the internal Au atomic arrangement was 

decreased; the PDA still maintains an amorphous structure, but the polymerization between PDAs 

is more compact.



Figure S6 Radial distribution function plots. (a) Radial distribution function of Au-Au in 

AuNP@PDA; (b) Radial distribution function of Au-Au in AuNP; (c) Radial distribution function 

of PDA-PDA in AuNP@PDA; (d) Radial distribution function of PDA-PDA in PDA

In summary, AuNP is embedded in the polymer PDA to form a core-shell complex, with PDA 

acting as the shell layer material to impart better properties to the nanoparticles. The interfacial 

interactions between PDA and AuNP will provide a guide for model construction in the next finite 

element module.

7. Thermal conductivity

The Green-Kubo formula states that the transport coefficient is equal to the integral of the 

autocorrelation function over the correlation time. For the calculation of thermal conductivity there 

is the following Green-Kubo formula:

𝑘𝜇𝑣(𝑡) =
𝑉

𝑘𝐵𝑇2

𝑡

∫
0

𝑑𝑡'𝐶𝜇𝑣(𝑡') (S8)

where  is the thermal conductivity tensor,  is the correlation time,  is the 𝑘𝜇𝑣(𝑡)(𝜇,𝑣 = 𝑥,𝑦,𝑧) 𝑡' 𝑘𝐵

Boltzmann constant, T is the temperature, V is the volume, and  is the heat current 𝐶𝜇𝑣(𝑡')



autocorrelation function.

The expression for the heat current autocorrelation function is given below:

𝐶𝜇𝑣(𝑡) = 〈𝐽𝜇(0) ∙ 𝐽𝑣(𝑡)〉 (S9)

where  (µ =x, y, z) is the heat flow. Since the system is studied isotropic (isotropic) in three 𝐽𝜇

dimensions, the final calculated thermal conductivity is taken as the average of the diagonal 

components:

𝑘 =
𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧

3
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Heat flow is defined as the time derivative of the energy density moment:

𝐽 =
1
𝑉[∑
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𝑖

𝑆𝑖𝑣𝑖] (S11)

where ei in the first term of the equation is the per-atom energy (potential and kinetic). This is 

calculated by the computes per-atom kinetic energy and per-atom potential energy. Si in the second 

term is the per-atom stress tensor calculated by the compute per-atom stress. See compute 

stress/atom and compute centroid/stress/atom for possible definitions of atomic stress Si in the case 

of bonded and many-body interactions. The tensor multiplies vi by a 3×3 matrix to yield a vector. 

Note that as discussed below, the 1/V scaling factor in the equation for J is not included in the 

calculation performed by these computes; you need to add it for a volume appropriate to the atoms 

included in the calculation.

8. Parameters

The model needs to obtain thermal and optical parameters for skin, fat, healthy tissue and breast 

tumor tissue. The tissue input parameters are shown in Table S3 .

Table S3 Thermal parameters of tissue

Parameters Skin5 Fat5 Tumor5 Healthy Tissues6 Blood6 Unit



Density ρ 1180 1000 1150 1090 1060 𝐾𝑔/𝑚3

Specific heat 2291 3148 4200 4181.3 3800 𝐽/(𝑘𝑔 ∙ 𝐾)

Thermal conductivity 0.58 0.58 0.561 1.1 - (𝑊/(𝑚 ∙ 𝐾))

Blood Perfusion 0.0005 0.00036 0.00036 0.00036 - 1/𝑠

Metabolic heat production rate 420 420 420 420 - 𝑊/𝑚3

Activating Energy - - 6.28×105 6.28×105 - 𝐽/𝑚𝑜𝑙

Frequency Factor - - 3×1098 3×1098 - 1/𝑠

Absorption Coefficient 19 6.5 6 3 - 1/𝑚
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