Electronic Supplementary Information (ESI) of

Computational screening of efficient azafullerene-supported single atom as bifunctional electrocatalysts for oxygen evolution and reduction reaction

Mo Xiong*, Tao Yang*

¹MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

Mo Xiong: <u>xiongmo@xjtu.edu.cn</u> Tao Yang: <u>taoyang1@xjtu.edu.cn</u>

Table S1. Binding, cohesive energies of single TM, and their differences on
C ₅₄ N ₄ -pyridS4
Table S2. Binding, cohesive energies of single TM, and their differences on
C ₅₄ N ₄ -pyrid-pyrroS5
Table S3. Binding, cohesive energies of single TM, and their differences on
C ₆₄ N ₄ -pyridS6
Table S4. Binding, cohesive energies of single TM, and their differences on
C ₆₄ N ₄ -pyrid-pyrroS7
Table S5. The adsorption Gibbs free energies (eV) and the bond length (Å) of
reaction intermediates of OH, O and OOH, overpotentials (V) of OER and
ORR on TM@C ₅₄ N ₄ -pyridS8
Table S6. The adsorption Gibbs free energies (eV) and the bond length (Å) of
reaction intermediates of OH, O and OOH, overpotentials (V) of OER and
ORR on TM@C54N4-pyrid-pyrroS9
Table S7. The adsorption Gibbs free energies (eV) and the bond length (Å) of

Fig. S1 Construction of the structures and relative energyies for $C_{54}N_4$ computed
in the PBE level of theory
Fig. S2 Construction of the structures and relative energyies for $C_{64}N_4$ computed
in the PBE level of theory
Fig. S3 Top view and side view of (a) $C_{54}N_4$ -pyrid with four pyridinic nitrogen,
(b) C ₅₄ N ₄ -pyrid-pyrro with two pyridinic nitrogen and two pyrrolic nitrogen,
(c) $C_{64}N_4$ -pyrid with four pyridinic nitrogen, (d) $C_{64}N_4$ -pyrid-pyrro with two
pyridinic nitrogen and two pyrrolic nitrogen
Fig. S4 The differencee between the binding energies of the TM atoms supported
on the four azafullerenes C54N4-pyrid (light red bars), C54N4-pyrid-pyrro
(orange bars), $C_{64}N_4$ -pyrid (light blue bars with diagonal stripes) and $C_{64}N_4$ -
pyrid-pyrro (dark blue bars with diagonal stripes), and the corresponding
cohesive energies
Fig. S5 Summary of the ORR overpotential for TM supported on the four
azafullerenes C54N4-pyrid (light red bars), C54N4-pyrid-pyrro (orange bars),
C ₆₄ N ₄ -pyrid (light blue bars with diagonal stripes) and C ₆₄ N ₄ -pyrid-pyrro
(dark blue bars with diagonal stripes)
Fig. S6 Summary of the OER overpotential for TM supported on the four
azafullerenes C ₅₄ N ₄ -pyrid (light red bars), C ₅₄ N ₄ -pyrid-pyrro (orange bars),
C ₆₄ N ₄ -pyrid (light blue bars with diagonal stripes) and C ₆₄ N ₄ -pyrid-pyrro
(dark blue bars with diagonal stripes)

Fig. S7 Scaling relationship between ΔG_{*O} and ΔG_{*OH} for (a) TM@C₅₄N₄-pyrid, (c) $TM@C_{54}N_4$ -pyrid-pyrro, (e) $TM@C_{64}N_4$ -pyrid and (g) $TM@C_{64}N_4$ pyrid-pyrro. And the scaling relationship between ΔG_{*OOH} and ΔG_{*OH} for (b) TM@C₅₄N₄-pyrid, (d) TM@C₅₄N₄-pyrid-pyrro, (f) TM@C₆₄N₄-pyrid and (h) $TM@C_{64}N_4$ -pyrid-pyrro.....S18 Fig. S8 Adsorption free energies on (a) Co@C₅₄N₄-pyrid, (b) Rh@C₅₄N₄-pyrid, and (c) $Cu@C_{54}N_4$ -pyrid at electrode potentials of 0 and 1.23 V for ORR and on (d) $Rh@C_{54}N_4$ -pyrid and (e) $Ni@C_{54}N_4$ -pyrid at 0 and 1.23 V for OER. Fig. S9 Adsorption free energies on (a) $Rh@C_{54}N_4$ -pyrid-pyrro, (b) $Co@C_{54}N_4$ pyrid-pyrro, and (c) Ir@C₅₄N₄-pyrid-pyrro at electrode potentials of 0 and 1.23 V for ORR and on (d) Rh@C₅₄N₄-pyrid-pyrro at 0 and 1.23 V for OER. Fig. S10 Adsorption free energies on (a) $Rh@C_{64}N_4$ -pyrid, (b) $Cu@C_{64}N_4$ -pyrid, and (c) $Co@C_{64}N_4$ -pyrid at electrode potentials of 0 and 1.23 V for ORR and on (d) Ni@C₆₄N₄-pyrid and (e) Rh@C₆₄N₄-pyrid at 0 and 1.23 V for OER. Fig. S11 Adsorption free energies on (a) $Rh@C_{64}N_4$ -pyrid-pyrro and (b) Co@C₆₄N₄-pyrid-pyrro at electrode potentials of 0 and 1.23 V for ORR and on (c) Rh@C₆₄N₄-pyrid-pyrro at 0 and 1.23 V for OER......S20 Fig. S12 *d*-band center energies of the TM atoms on $C_{54}N_4$ - pyrid, $C_{54}N_4$ -pyrid-Fig. S13 Crystal orbital Hamilton population (COHP) between the active centers TM and the OH* intermediate for TM@C₅₄N₄-pyrid, TM@C₅₄N₄-pyridpyrro, TM@C₆₄N₄-pyrid TM@C₆₄N₄-pyrid-pyrro with the bonding state (green) and antibonding (red) state. (TM = Co, Rh, and Ir).S22 Fig. S14 Evolution of the temperature and the total energy within 10 ps AIMD simulations at 300 K for TM@C₅₄N₄-pyrid, TM@C₅₄N₄-pyrid-pyrro, $TM@C_{64}N_4$ -pyrid, and $TM@C_{64}N_4$ -pyrid-pyrro (TM = Co, Rh, Ir) Fig. S15 Adsorption free energies on PtN₄@graphene......S24 Fig. S16 A comparison of adsorption free energies on Rh@C₆₄N₄-pyrid from the vaccum and implicit solvent (H₂O) model......S24

TM	$E_{\rm b}({\rm eV})$	$E_{\rm coh}({\rm eV})$	$E_{\rm b} - E_{\rm coh} ({\rm eV})$
Fe	-6.485	-4.28	-2.205
Со	-6.815	-4.39	-2.425
Ni	-6.49	-4.44	-2.05
Ru	-7.49	-6.74	-0.75
Rh	-6.712	-5.75	-0.962
Pd	-4.283	-3.89	-0.393
Os	-7.957	-8.17	0.213
Ir	-7.646	-6.94	-0.706
Pt	-6.024	-5.84	-0.184
Ti	-7.526	-4.85	-2.676
V	-6.201	-5.31	-0.891
Cr	-5.959	-4.1	-1.859
Mn	-5.412	-2.92	-2.492
Cu	-4.144	-3.49	-0.654
Zn	-2.77	-1.35	-1.42
Au	-1.884	-3.81	1.926
Zr	-8.207	-6.25	-1.957
Nb	-7.306	-7.57	0.264
Мо	-4.954	-6.82	1.866
Hf	-8.195	-6.44	-1.755
Та	-8.102	-8.1	-0.002
W	-6.416	-8.9	2.484
Sc	-6.906	-3.9	-3.006
Y	-6.714	-4.37	-2.344
Cd	-1.523	-1.16	-0.363
Ag	-2.588	-2.95	0.362
Re	-4.853	-8.03	3.177

Table S1. Binding, cohesive energies of single TM, and their differences on $C_{54}N_4$ -pyrid.

Table S2. Binding, cohesive energies of single TM, and their differences on $C_{54}N_4$ -pyrid-pyrro.

$\begin{bmatrix} 1VI \\ E_b (CV) \end{bmatrix} \begin{bmatrix} E_{coh} (CV) \\ E_{coh} (CV) \end{bmatrix}$
--

Fe	-7.319	-4.28	-3.039
Со	-7.541	-4.39	-3.151
Ni	-7.485	-4.44	-3.045
Ru	-7.818	-6.74	-1.078
Rh	-7.371	-5.75	-1.621
Pd	-5.435	-3.89	-1.545
Os	-8.312	-8.17	-0.142
Ir	-8.354	-6.94	-1.414
Pt	-7.257	-5.84	-1.417
Ti	-9.191	-4.85	-4.341
V	-8.432	-5.31	-3.122
Cr	-7.014	-4.1	-2.914
Mn	-6.489	-2.92	-3.569
Cu	-5.244	-3.49	-1.754
Zn	-3.961	-1.35	-2.611
Au	-3.38	-3.81	0.43
Zr	-8.752	-6.25	-2.502
Nb	-7.553	-7.57	0.017
Мо	-7.22	-6.82	-0.4
Hf	-8.727	-6.44	-2.287
Та	-9.678	-8.1	-1.578
W	-8.538	-8.9	0.362
Sc	-9.341	-3.9	-5.441
Y	-7.868	-4.37	-3.498
Cd	-2.674	-1.16	-1.514
Ag	-3.044	-2.95	-0.094
Re	-7.449	-8.03	0.581

Table S3. Binding, cohesive energies of single TM, and their differences on $C_{64}N_4$ -pyrid.

М	$E_{\rm b}({\rm eV})$	$E_{\rm coh}~({\rm eV})$	$E_{\rm b} - E_{\rm coh} ({\rm eV})$
Fe	-6.394	-4.28	-2.114

Со	-6.68	-4.39	-2.29
Ni	-6.366	-4.44	-1.926
Ru	-7.342	-6.74	-0.602
Rh	-6.555	-5.75	-0.805
Pd	-4.129	-3.89	-0.239
Os	-7.773	-8.17	0.397
Ir	-7.477	-6.94	-0.537
Pt	-5.855	-5.84	-0.015
Ti	-7.66	-4.85	-2.81
V	-6.088	-5.31	-0.778
Cr	-5.876	-4.1	-1.776
Mn	-5.366	-2.92	-2.446
Cu	-4.041	-3.49	-0.551
Zn	-2.635	-1.35	-1.285
Au	-1.76	-3.81	2.05
Zr	-8.259	-6.25	-2.009
Nb	-7.236	-7.57	0.334
Мо	-4.817	-6.82	2.003
Hf	-8.265	-6.44	-1.825
Та	-8.038	-8.1	0.062
W	-6.18	-8.9	2.72
Sc	-6.825	-3.9	-2.925
Y	-6.511	-4.37	-2.141
Cd	-1.404	-1.16	-0.244
Ag	-2.526	-2.95	0.424
Re	-4.581	-8.03	3.449

Table S4. Binding, cohesive energies of single TM, and their differences on $C_{64}N_4$ -pyrid-pyrro.

М	$E_{\rm b}({\rm eV})$	$E_{\rm coh}~({\rm eV})$	$E_{\rm b} - E_{\rm coh} ({\rm eV})$
Fe	-8.325	-4.28	-4.045

Со	-8.499	-4.39	-4.109
Ni	-8.461	-4.44	-4.021
Ru	-8.833	-6.74	-2.093
Rh	-8.343	-5.75	-2.593
Pd	-6.599	-3.89	-2.709
Os	-9.542	-8.17	-1.372
Ir	-9.602	-6.94	-2.662
Pt	-8.584	-5.84	-2.744
Ti	-10.038	-4.85	-5.188
V	-9.259	-5.31	-3.949
Cr	-7.82	-4.1	-3.72
Mn	-7.573	-2.92	-4.653
Cu	-6.019	-3.49	-2.529
Zn	-4.563	-1.35	-3.213
Au	-4.513	-3.81	-0.703
Zr	-9.728	-6.25	-3.478
Nb	-9.937	-7.57	-2.367
Мо	-8.208	-6.82	-1.388
Hf	-9.663	-6.44	-3.223
Та	-10.784	-8.1	-2.684
W	-9.731	-8.9	-0.831
Sc	-10.204	-3.9	-6.304
Υ	-8.868	-4.37	-4.498
Cd	-3.142	-1.16	-1.982
Ag	-2.18	-2.95	0.77
Re	-7.147	-8.03	0.883

Table S5. The adsorption Gibbs free energies (eV) and the bond length (Å) of reaction intermediates ofOH, O and OOH, overpotentials (V) of OER and ORR on $TM@C_{54}N_4$ -pyrid.

Fe	0.173	1.222	3.311	0.859	1.057	1.638	1.829	1.755
Co	0.957	2.101	3.914	0.583	0.273	1.654	1.865	1.855
Ni	1.383	2.973	4.352	0.36	0.662	1.718	1.846	1.861
Ru	0.257	0.683	3.122	1.209	0.973	1.726	1.926	1.839
Rh	1.121	2.635	4.05	0.283	0.36	1.823	2.012	2.033
Pd	1.652	3.345	4.921	0.463	1.231	1.791	1.931	2.299
Os	-0.161	-0.296	0.786	2.904	1.391	1.741	1.94	1.778
Ir	0.771	1.805	3.77	0.736	0.459	1.819	2.015	1.985
Pt	2.964	3.283	4.995	1.734	1.305	1.784	1.877	2.322
Ti	-2.599	-2.564	0.72	2.97	3.829	1.632	1.804	1.886
V	-2.741	-2.938	-1.647	5.337	3.971	1.596	1.779	1.611
Cr	-0.39	-0.4	2.791	1.961	1.62	1.568	1.809	1.806
Mn	-0.131	0.149	3.126	1.747	1.361	1.574	1.834	1.846
Cu	1.063	2.987	4.062	0.695	0.372	1.743	1.83	1.855
Zn	0.101	2.682	3.461	1.351	1.129	1.853	1.849	1.911
Au	0.357	6.75	4.817	5.163	3.163	2.158	1.95	2.818
Zr	-3.136	-2.682	0.318	3.372	4.366	1.771	1.934	2.046
Nb	-2.722	-2.971	-3.428	7.118	3.952	1.717	1.894	1.721
Mo	-3.053	-3.507	-0.688	4.378	4.283	1.682	1.877	1.674
Hf	-3.558	-2.834	-0.16	3.85	4.788	1.78	1.912	2.024
Та	-3.147	-3.302	-3.916	7.606	4.377	1.746	1.895	1.75
W	-3.363	-3.765	-4.114	7.804	4.593	1.719	1.881	1.734
Sc	-3.1	-1.166	0.299	3.391	4.33	1.735	1.868	1.983
Y	-3.376	-1.138	-0.017	3.707	4.606	1.876	2.021	2.14
Cd	-0.051	2.638	3.331	1.459	1.281	2.052	2.055	2.113
Ag	1.448	3.516	4.306	0.837	0.616	1.974	2.058	2.128
Re	-3.727	-4.134	-3.182	6.872	4.957	1.712	1.894	1.745

Table S6. The adsorption Gibbs free energies (eV) and the bond length (Å) of reaction intermediates ofOH, O and OOH, overpotentials (V) of OER and ORR on $TM@C_{54}N_4$ -pyrid-pyrro..

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Fe	0.271	1.268	3.409	0.912	0.959	1.624	1.832	1.742
Co	1.028	2.248	4.069	0.591	0.379	1.646	1.85	1.825
Ni	1.71	3.273	4.802	0.48	1.112	1.698	1.832	1.987
Ru	0.05	0.456	2.783	1.098	1.18	1.711	1.903	1.779
Rh	1.078	2.598	3.952	0.29	0.262	1.779	1.973	1.993
Pd	2.31	4.478	4.979	1.08	1.289	2.021	1.928	2.363
Os	-0.285	-0.182	2.32	1.37	1.515	1.733	1.922	1.768
Ir	0.816	2.016	3.769	0.524	0.414	1.806	1.991	1.968
Pt	2.29	3.982	5.062	1.06	1.372	1.782	2.068	2.391
Ti	-2.07	-2.018	1.287	2.403	3.3	1.634	1.799	1.887
V	-1.328	-1.725	-0.778	4.468	2.558	1.596	1.78	1.603
Cr	-0.157	-0.215	3.006	1.991	1.387	1.565	1.801	1.837
Mn	0.005	0.555	3.146	1.361	1.225	1.571	1.814	1.864
Cu	1.725	3.638	4.658	0.684	0.968	1.738	1.833	1.868
Zn	0.87	3.491	4.034	1.391	0.687	1.864	1.862	1.945
Au	1.648	3.43	4.884	0.552	1.194	1.861	1.966	2.896
Zr	-3.701	-3.297	-0.334	4.024	4.931	1.772	1.931	2.044
Nb	-3.429	-3.768	-4.269	7.959	4.659	1.717	1.887	1.721
Mo	-1.45	-2.182	-1.328	5.018	2.68	1.682	1.858	1.692
Hf	-4.143	-3.446	-2.491	6.181	5.373	1.781	1.908	1.825
Та	-2.597	-2.791	-3.413	7.103	3.827	1.744	1.886	1.749
W	-1.871	-2.644	-2.408	6.098	3.101	1.718	1.869	1.73
Sc	-1.874	0.631	1.439	2.251	3.104	1.754	1.87	1.987
Y	-3.497	-0.786	-0.192	3.882	4.727	1.905	2.024	2.149
Cd	0.642	3.304	3.9	1.432	0.634	2.074	2.064	2.14
Ag	1.569	3.912	4.383	1.113	0.759	1.92	2.01	2.072
Re	-1.29	-2.215	-0.866	4.556	2.52	1.704	1.886	1.727

Table S7. The adsorption Gibbs free energies (eV) and the bond length (Å) of reaction intermediates of OH, O and OOH, overpotentials (V) of OER and ORR on $TM@C_{64}N_4$ -pyrid.

$ TM \Delta G_{*OH} \Delta G_{*O} \Delta G_{*OOH} \eta_{OER} \eta_{ORR} M-O M-OH M-OOH $
--

Fe	0.07	1.194	3.302	0.878	1.16	1.638	1.824	1.834
Co	0.813	2.024	3.797	0.543	0.417	1.653	1.863	1.851
Ni	1.32	2.86	4.357	0.309	0.667	1.718	1.848	1.857
Ru	0.22	0.463	3.204	1.511	1.01	1.725	1.938	1.924
Rh	1.027	2.419	4.013	0.364	0.323	1.82	2.022	2.032
Pd	1.543	3.196	4.913	0.487	1.223	1.789	1.926	2.311
Os	-0.273	-0.521	0.542	3.148	1.503	1.742	1.941	1.778
Ir	0.618	1.629	3.657	0.798	0.612	1.819	2.015	1.989
Pt	1.735	2.836	4.72	0.654	1.03	1.768	2.083	2.159
Ti	-2.384	-2.323	-1.773	5.463	3.614	1.633	1.804	1.648
V	-2.816	-2.565	-2.173	5.863	4.046	1.594	1.779	1.609
Cr	-0.424	-0.383	2.753	1.906	1.654	1.571	1.793	1.858
Mn	-0.161	0.151	3.121	1.74	1.391	1.577	1.839	1.851
Cu	0.98	2.909	4.093	0.699	0.403	1.741	1.825	1.857
Zn	0.029	2.595	3.409	1.336	1.201	1.851	1.848	1.906
Au	0.261	2.244	4.803	1.329	1.113	1.868	1.95	2.839
Zr	-2.984	-2.529	0.333	3.357	4.214	1.771	1.938	2.051
Nb	-2.741	-2.919	-3.41	7.1	3.971	1.718	1.895	1.722
Mo	-3.212	-3.518	-3.447	7.137	4.442	1.683	1.881	1.707
Hf	-3.389	-2.657	-0.007	3.697	4.619	1.78	1.915	2.028
Та	-3.175	-3.257	-3.918	7.608	4.405	1.747	1.893	1.752
W	-3.764	-3.886	-4.471	8.161	4.994	1.721	1.883	1.736
Sc	-3.066	-1.188	0.254	3.436	4.296	1.734	1.869	1.981
Y	-3.464	-1.299	-0.163	3.853	4.694	1.873	2.021	2.141
Cd	-0.104	2.462	3.277	1.336	1.334	2.06	2.055	2.111
Ag	1.391	3.506	4.368	0.885	0.678	1.963	2.048	2.118
Re	-4.056	-4.321	-3.474	7.164	5.286	1.715	1.893	1.748

Table S8. The adsorption Gibbs free energies (eV) and the bond length (Å) of reaction intermediates ofOH, O and OOH, overpotentials (V) of OER and ORR on $TM@C_{64}N_4$ -pyrid-pyrro.

$ TM \mid \Delta G_{*OH} \mid \Delta G_{*O} \mid \Delta G_{*OOH} \mid \eta_{OER} \mid \eta_{ORR} \mid M-O \mid M-OH \mid M-OOH $
--

Fe	0.158	1.171	3.565	1.165	1.072	1.623	1.831	1.787
Co	0.935	2.12	3.967	0.617	0.295	1.644	1.844	1.827
Ni	1.705	3.235	4.8	0.475	1.11	1.696	1.826	1.987
Ru	0.042	0.387	2.726	1.109	1.188	1.711	1.896	1.761
Rh	0.99	2.411	3.854	0.213	0.24	1.777	1.97	1.994
Pd	2.312	4.176	5.013	1.082	1.323	1.777	1.921	2.351
Os	-0.346	-0.306	2.211	1.479	1.576	1.732	1.917	1.76
Ir	0.736	1.912	3.806	0.664	0.494	1.804	1.99	1.974
Pt	2.272	3.971	5.09	1.042	1.4	1.781	2.067	2.385
Ti	-2.149	-2.136	1.207	2.483	3.379	1.633	1.798	1.89
V	-1.43	-1.886	-0.899	4.589	2.66	1.597	1.774	1.604
Cr	-0.19	-0.266	3.005	2.04	1.42	1.565	1.797	1.839
Mn	0.023	0.604	3.151	1.317	1.207	1.569	1.81	1.862
Cu	1.786	3.696	4.719	0.68	1.029	1.737	1.807	1.878
Zn	0.943	3.552	4.048	1.379	0.734	1.867	1.864	1.949
Au	1.566	3.482	4.865	0.686	1.175	1.863	1.966	2.924
Zr	-3.671	-3.304	-2.229	5.919	4.901	1.772	1.928	1.801
Nb	-2.307	-2.549	-2.864	6.554	3.537	1.718	1.883	1.718
Mo	-1.503	-2.267	-1.621	5.311	2.733	1.682	1.857	1.697
Hf	-4.126	-3.437	-2.398	6.088	5.356	1.781	1.908	1.836
Та	-2.681	-2.869	-3.434	7.124	3.911	1.745	1.885	1.751
W	-1.966	-2.789	-2.589	6.279	3.196	1.718	1.867	1.729
Sc	-1.928	0.641	1.391	2.299	3.158	1.756	1.87	1.987
Y	-1.802	1.01	1.512	2.178	3.032	1.906	2.024	2.15
Cd	0.714	3.265	3.917	1.321	0.578	2.081	2.067	2.155
Ag	1.563	3.915	4.376	1.122	0.769	1.918	2.007	2.07
Re	-1.263	-2.373	-1.161	4.851	2.493	1.704	1.887	1.73

Table S9. NBO, AIM, Bader charges Q(|e|) of TM@C₅₄N₄-pyrid, TM@C₅₄N₄-pyrro, TM@C₆₄N₄-pyrid,

and TM@ C_{64} N₄-pyrro. (TM = Co, Rh, Ir)

 $TM@C_{54}N_4-pyrid \qquad Q(|e|)$

ТМ	NBO	AIM					
Co	0.73961	0.8494					
Rh	0.69133	0.7456					
Ir	0.79903	0.8521					
TM@C ₅₄ N ₄ -pyrid-pyrro							
Со	0.80358	0.9113					
Rh	0.7294	0.7968					
Ir	0.79576	0.889					
TM@C ₆₄ N ₄ -pyrid							
Со	0.75299	0.8579					
Rh	0.70908	0.7362					
Ir	0.81434	0.8786					
TM@C ₆₄ N ₄ -pyrid-pyrro							
Со	0.81085	0.9346					
Rh	0.74021	0.8197					
Ir	0.79601	0.8988					

Table S10. Calculated electron density $\rho(r_c) \rho$ and its Laplacian $\nabla^2 \rho(r_c)$ at the bond critical point, bond length, and Wiberg bond orders P(TM-N) of TM-N in TM@C₅₄N₄-pyrid, TM@C₅₄N₄-pyrro, TM@C₆₄N₄-pyrro, and TM@C₆₄N₄-pyrro. (TM = Co, Rh, Ir)

TM@C ₅₄ N ₄ -pyrid	$\rho(r_c)$	$\nabla^2 \rho(r_c)$	BL	BL(PBE)	P(TM-N)
Co-N1	0.123221	0.488037	1.872127	1.869	0.4446
Co-N2	0.123221	0.488037	1.872127	1.869	0.4446
Co-N3	0.123221	0.488037	1.872127	1.868	0.4446
Co-N4	0.123221	0.488037	1.872127	1.868	0.4446
Rh-N1	0.128277	0.427088	1.99	1.984	0.453
Rh-N2	0.128277	0.427088	1.99	1.983	0.453
Rh-N3	0.128277	0.427088	1.99	1.984	0.453
Rh-N4	0.128277	0.427088	1.99	1.985	0.453
Ir-N1	0.146511	0.436251	1.972345	1.978	0.5617
Ir-N2	0.146511	0.436251	1.972345	1.977	0.5617
Ir-N3	0.146511	0.436251	1.972345	1.977	0.5617

Ir-N4	0.146511	0.436251	1.972345	1.977	0.5617
TM@C ₅₄ N ₄ -pyrid-					
pyrro					
Co-N1	0.124477	0.46638	1.869603	1.884	0.4336
Co-N2	0.122102	0.456943	1.876957	1.883	0.457
Co-N3	0.122102	0.456943	1.876957	1.883	0.457
Co-N4	0.124477	0.46638	1.869603	1.885	0.4336
Rh-N1	0.129295	0.408308	1.988829	1.99	0.4514
Rh-N2	0.12798	0.404772	1.991095	1.994	0.4811
Rh-N3	0.12798	0.404772	1.991095	1.993	0.4811
Rh-N4	0.129295	0.408308	1.988829	1.99	0.4514
Ir-N1	0.143769	0.415027	1.981557	1.985	0.5362
Ir-N2	0.141329	0.417274	1.985292	1.986	0.5572
Ir-N3	0.141329	0.417274	1.985292	1.986	0.5572
Ir-N4	0.143769	0.415027	1.981557	1.986	0.5362
TM@C ₆₄ N ₄ -pyrid					
Co-N1	0.126272	0.491744	1.863617	1.86	0.4723
Co-N2	0.119905	0.473963	1.883336	1.873	0.429
Co-N3	0.119905	0.473963	1.883336	1.873	0.429
Co-N4	0.126272	0.491744	1.863617	1.859	0.4723
Rh-N1	0.130014	0.430796	1.985649	1.978	0.4719
Rh-N2	0.126026	0.417219	1.998573	1.991	0.4398
Rh-N3	0.126026	0.417219	1.998573	1.99	0.4398
Rh-N4	0.130014	0.430796	1.985649	1.978	0.4719
Ir-N1	0.147909	0.432521	1.969918	1.972	0.5654
Ir-N2	0.146904	0.432688	1.972042	1.979	0.5692
Ir-N3	0.146904	0.432688	1.972042	1.979	0.5692
Ir-N4	0.147909	0.432521	1.969918	1.971	0.5654
TM@C ₆₄ N ₄ -pyrid-					
pyrro					
Co-N1	0.123168	0.456362	1.874369	1.889	0.4274
Co-N2	0.122764	0.453141	1.875359	1.885	0.4604
Co-N3	0.122764	0.453141	1.875359	1.884	0.4604

Co-N4	0.123168	0.456362	1.874369	1.888	0.4274
Rh-N1	0.126389	0.405666	1.995764	1.999	0.446
Rh-N2	0.126968	0.406332	1.99166	1.994	0.4849
Rh-N3	0.126969	0.406332	1.99166	1.994	0.4849
Rh-N4	0.126369	0.405666	1.995764	1.999	0.446
Ir-N1	0.142552	0.408992	1.985844	1.993	0.5319
Ir-N2	0.141493	0.41444	1.985326	1.989	0.5587
Ir-N3	0.141493	0.41444	1.985326	1.989	0.5587
Ir-N4	0.142552	0.408992	1.985844	1.993	0.5319

Fig. S1 Construction of the structures and relative energyies for $C_{54}N_4$ computed in the PBE level of theory.

Fig. S2 Construction of the structures and relative energyies for $C_{64}N_4$ computed in the PBE level of theory.

Fig. S3 Top view and side view of (a) $C_{54}N_4$ -pyrid with four pyridinic nitrogen, (b) $C_{54}N_4$ -pyrid-pyrro with two pyridinic nitrogen and two pyrrolic nitrogen, (c) $C_{64}N_4$ -pyrid with four pyridinic nitrogen, (d) $C_{64}N_4$ -pyrid-pyrro with two pyridinic nitrogen and two pyrrolic nitrogen.

Fig. S4 The difference between the binding energies of the TM atoms supported on the four azafullerenes $C_{54}N_4$ -pyrid (light red bars), $C_{54}N_4$ -pyrid-pyrro (orange bars), $C_{64}N_4$ -pyrid (light blue bars with diagonal stripes) and $C_{64}N_4$ -pyrid-pyrro (dark blue bars with diagonal stripes), and the corresponding cohesive energies.

Fig. S5 Summary of the ORR overpotential for TM supported on the four azafullerenes $C_{54}N_4$ -pyrid (light red bars), $C_{54}N_4$ -pyrid-pyrro (orange bars), $C_{64}N_4$ -pyrid (light blue bars with diagonal stripes) and $C_{64}N_4$ -pyrid-pyrro (dark blue bars with diagonal stripes).

Fig. S6 Summary of the OER overpotential for TM supported on the four azafullerenes $C_{54}N_4$ -pyrid (light red bars), $C_{54}N_4$ -pyrid-pyrro (orange bars), $C_{64}N_4$ -pyrid (light blue bars with diagonal stripes) and $C_{64}N_4$ -pyrid-pyrro (dark blue bars with diagonal stripes).

Fig. S7 Scaling relationship between ΔG_{*O} and ΔG_{*OH} for (a) TM@C₅₄N₄-pyrid, (c) TM@C₅₄N₄pyrid-pyrro, (e) TM@C₆₄N₄-pyrid and (g) TM@C₆₄N₄-pyrid-pyrro. And the scaling relationship between ΔG_{*OOH} and ΔG_{*OH} for (b) TM@C₅₄N₄-pyrid, (d) TM@C₅₄N₄-pyrid-pyrro, (f) TM@C₆₄N₄-pyrid and (h) TM@C₆₄N₄-pyrid-pyrro.

Fig. S8 Adsorption free energies on (a) $Co@C_{54}N_4$ -pyrid, (b) Rh@C_{54}N_4-pyrid, and (c) $Cu@C_{54}N_4$ -pyrid at electrode potentials of 0 and 1.23 V for ORR and on (d) Rh@C_{54}N_4-pyrid and (e) Ni@C_{54}N_4-pyrid at 0 and 1.23 V for OER.

Fig. S9 Adsorption free energies on (a) $Rh@C_{54}N_4$ -pyrid-pyrro, (b) $Co@C_{54}N_4$ -pyrid-pyrro, and (c) $Ir@C_{54}N_4$ -pyrid-pyrro at electrode potentials of 0 and 1.23 V for ORR and on (d) $Rh@C_{54}N_4$ -pyrid-pyrro at 0 and 1.23 V for OER.

Fig. S10 Adsorption free energies on (a) Rh@C₆₄N₄-pyrid, (b) Cu@C₆₄N₄-pyrid, and (c) Co@C₆₄N₄-pyrid at electrode potentials of 0 and 1.23 V for ORR and on (d) Ni@C₆₄N₄-pyrid and (e) Rh@C₆₄N₄-pyrid at 0 and 1.23 V for ORR.

Fig. S11 Adsorption free energies on (a) $Rh@C_{64}N_4$ -pyrid-pyrro and (b) $Co@C_{64}N_4$ -pyrid-pyrro at electrode potentials of 0 and 1.23 V for ORR and on (c) $Rh@C_{64}N_4$ -pyrid-pyrro at 0 and 1.23 V for OER.

Fig. S12 *d*-band center energies of the TM atoms on $C_{54}N_4$ - pyrid, $C_{54}N_4$ -pyrid-pyrro, $C_{64}N_4$ - pyrid and $C_{54}N_4$ -pyrid-pyrro.

Fig. S13 Crystal orbital Hamilton population (COHP) between the active centers TM and the OH* intermediate for TM@C₅₄N₄-pyrid, TM@C₅₄N₄-pyrid-pyrro, TM@C₆₄N₄-pyrid TM@C₆₄N₄-pyrid-pyrro with the bonding state (green) and antibonding (red) state. (TM = Co, Rh, and Ir).

Fig. S14 Evolution of the temperature and the total energy within 10 ps AIMD simulations at 300 K for $TM@C_{54}N_4$ -pyrid, $TM@C_{54}N_4$ -pyrid-pyrro, $TM@C_{64}N_4$ -pyrid, and $TM@C_{64}N_4$ -pyrid-pyrro (TM = Co, Rh, Ir).

Fig. S15 Adsorption free energies on $PtN_4@graphene$.

Fig. S16 A comparison of adsorption free energies on $Rh@C_{64}N_4$ -pyrid from the vaccum and implicit solvent (H₂O) model.