Dissociation and aggregation behaviors of starch in choline amino acid ionic liquid solvents: the anion structure effect

1. The structure information of normal corn starch

The ATR-FTIR spectrum of normal corn starch is shown in Fig.S1. Starch exhibits a strong, broad absorption peak around 3200 cm⁻¹, which corresponds to the stretching vibration peak of the -OH group. A medium-intensity absorption peak at 2924 cm⁻¹ is associated with the antisymmetric stretching vibration of the -CH₂ group in starch. The absorption peak around 1636 cm⁻¹ corresponds to water absorption in the amorphous region of starch. The peak around 1342 cm⁻¹ is attributed to the bending vibration of the C-OH bond and the twisting vibration of the -CH₂ group in starch. The absorption peak near 1003 cm⁻¹ can be assigned to the stretching vibration of the C-O bond and the bending vibration of the C-OH group. These vibrational peak features of normal corn starch are consistent with those from previous studies of starch samples derived from both standard normal and waxy corn ¹. Additionally, the ATR-FTIR spectrum shows no apparent impurity peaks, indicating the high purity of the starch.

Fig.S1 The ATR-FTIR spectrum of normal corn starch.

2. The structure information of choline lysine ([Cho][Lys]) and choline aspartic acid

([Cho][Asp]) ionic liquid (IL)

2.1 ATR-FTIR spectra

By comparing the infrared spectral peaks of Lys/Asp and [Cho][Cl] with those of [Cho][Lys] and [Cho][Asp] ILs, the vibration modes of the -NH₂, -OH, -CH₃, -CH₂, -N-(CH₃)₃, -COOH, and -COO⁻ groups in the [Cho][Lys] and [Cho][Asp] ILs were identified in the ATR-FTIR spectra (Fig.S2). Thus, the basic structural framework of [Cho][Lys]/[Cho][Asp] ILs was established.

Fig.S2 The ATR-FTIR spectra of lysine (Lys), aspartic acid (Asp), choline chlorine ([Cho][Cl]), [Cho][Lys] and [Cho][Asp] ILs. v_a : asymmetrical stretching vibration; v_s : symmetrical stretching vibration; δ_{as} : asymmetrical deformation vibration; τ : twisting vibration.

2.2 NMR spectra

The 1H NMR spectra (Fig.S3) of [Cho][Lys] and [Cho][Asp] ILs were obtained using an AVANCE III HD 600 NMR spectrometer (Bruker Corporation Inc., Karlsruhe, Germany), with their structural information presented as follows:

[Cho][Asp]: ¹H NMR (600 MHz): δ (ppm) 2.61 (dd, J = 17.2 and 8.8 Hz, 1H, C*H*₂COOH), 2.76 (dd, J = 17.2 and 3.7 Hz, 1H, C*H*₂COOH), 3.17 (s, 9H, (*CH*₃)₃N), 3.52-3.46 (m, 2H, CH₂C*H*₂OH), 3.83 (dd, J = 8.8 and 3.7 Hz, 1H, *CH*NH₂), 4.07-4.00 (m, 2H, CH₂C*H*₂N)

Fig.S3 1H NMR spectra of [Cho][Lys] (A) and [Cho][Asp] ILs (B).

3. The insolubility of starch in pure [Cho][Lys] and [Cho][Asp] IL

Fig.S4 The dissolution situation of starch granules in pure [Cho][Lys] and [Cho][Asp] at 100 °C for 20 min (micrographs: grey vision and polarized light micrographs: black vision).

4. The physicochemical properties of [Cho][Lys]-water and [Cho][Asp]-water solvents

4.1 pH values

Table S1 pH values of [Cho][AA]-water solvents with different water/IL (w:IL) ratios.

 Ratios	$pH_{[Cho][Lys]}$	$pH_{[Cho][Asp]}$
w:IL-10:0	$6.28\pm0.01^{\text{g}}$	$6.28\pm0.01^{\text{g}}$
w:IL-9:1	$11.42\pm0.01^{\rm f}$	$7.40\pm0.02^{\rm f}$
w:IL-7:3	$11.66\pm0.03^{\text{e}}$	7.53 ± 0.04^{e}
w:IL-5:5	$11.86\pm0.01^{\rm d}$	8.09 ± 0.01^{d}
w:IL-4:6	$12.03\pm0.04^{\rm c}$	8.26 ± 0.03^{c}
 w:IL-2:8	12.41 ± 0.06^{b}	9.28 ± 0.05^{b}

4.2 Apparent viscosity

From Fig.S5 and Table S2, it can be seen that the viscosity of [Cho][Asp]-water mixture at the same ratio was much higher than that of [Cho][Lys]-water mixture. Also, the viscosities of [Cho][Lys]-water and [Cho][Asp]-water solvents decreased significantly with continually water addition or with elevated temperature.

Fig.S5 The effect of temperature on the viscosities of [Cho][Lys]-water (A) and [Cho][Asp]-water (B) solvents.

Table S2 The viscosity values (mPa.s) of [Cho][Lys]-water and [Cho][Asp]-water solvents at 28 °C.

Ratios	η [Cho][Lys]	η [Cho][Asp]
w:IL-9:1	1.46±0.02 ^e	8.78±0.09 ^e
w:IL-7:3	3.24±0.03 ^d	19.27±2.01 ^d
w:IL-5:5	14.43±1.13°	53.09±5.19°
w:IL-4:6	35.15±1.68 ^b	136.35±11.12 ^b
w:IL-2:8	307.99±15.68ª	1283.80±39.01ª

5. Molecular characteristics of dissolved starches

The weight average molecular mass (M_w), dispersity (M_w/M_n) and mean square radius of gyration (R_g) of dissolved starches after heating at 100 °C for 20 min were measured and analyzed by a gel permeation chromatography system coupled with a multiangle light scattering detector (632.8 nm, DAWN HELEOS, Wyatt Technology, Santa Barbara, CA, USA) and a refractive index detector (Optilab rex, Wyatt Technology) according to the method of our previous study ². Here the molecular features of starch treated with high concentration [Cho][AA] solvents were chosen to understand the degradation effect of [Cho][AA] on starch (Fig.S6). And the M_w , M_w/M_n , and R_g values of dissolved starches are shown in Table S3. Compared with water, the M_w values of dissolved starches decreased slightly in [Cho][Asp]-water solvents, and this decrease grew with increasing [Cho][Asp]

concentration. All these molecular features suggest that starch could be moderately depolymerized during heating in [Cho][Asp]-water solvents. While due to the strong basicity of [Cho][Lys] (Table S1), the degradation degrees of starches were more prominent in [Cho][Lys]-water solvents.

Fig.S6 Molecular characterizations of starches after being heated in [Cho][Lys]-water (A) and [Cho][Asp]water solvents (B) for 20 min.

Table S3 Weight average molecular mass (M_w) , dispersity (M_w/M_n) , and mean square radius of gyration (R_g) of

dissolved starches.				
Solvents	M_w (g/mol)	Mw/Mn	R_g (nm)	
water	1.790×10 ⁷ (0.9%)	1.135 (1%)	106.4 (0.7%)	
[Cho][Lys]				
w:IL-4:6	1.189×10 ⁷ (2%)	1.098 (2%)	161.1 (0.6%)	
w:IL-2:8	8.299×10 ⁶ (0.6%)	1.415 (1%)	74.7 (0.9%)	
[Cho][Asp]				
w:IL-4:6	$1.706 \times 10^{7} (0.9\%)$	1.113 (1%)	105.4 (0.7%)	
w:IL-2:8	1.276×10 ⁷ (0.8%)	1.158 (2%)	113.3 (0.6%)	

References:

- 1. P. Rubens, J. Snauwaert, K. Heremans and R. Stute, In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell, *Carbohydrate Polymers*, 1999, **39**, 231-235.
- 2. J. Chen, X. Zeng and L. Chen, Regulation nature of water-choline amino acid ionic liquid mixtures on the disaggregation behavior of starch, *Carbohydrate Polymers*, 2021, **272**, 118474.