Regulation of the Valleytronic Properties in Single-Layer NbSeCl

¹Xiaole Qiu, ²Benchao Gong, ¹Wenjun Zhang, ¹Bing Liu, ¹Kai Han, ¹Hongchao Yang*

¹School of Physics and Electronic Information, Weifang University, Weifang 261061, China

²Department of Physics, School of Science, Jiangsu University of Science and Technology,

Zhenjiang 212100, China

*Corresponding author: hc_yang90@163.com

Table SI The calculated relative energies (meV) of the NbSeCl/HfN₂ heterostructures (b), (c), (d), (e), (f) and (g) with respect to that of the configuration (a).

configuration	(a)	(b)	(c)	(d)	(e)	(f)
ΔE	0	3.2	45.6	7.7	43.5	4.0

Fig. S1 The band structures of Cr-doped NbSeCl without SOC effect.

Fig. S2 (a) to (f) are top and side views of six NbSeCl/HfN₂ heterostructures. The blue, orange, red, green and gray balls represent Nb, Se, Cl, Hf and N atoms, respectively.

Fig. S3 Time evolution of free energy for NbSeCl/HfN₂ heterostructures at 300 K in AIMD simulation. The insets show the snapshot of atomic structure at 5 ps.

Fig. S4 Contour map of Berry curvature of NbSeCl/HfN $_2$ heterostructures over the entire 2D BZ.