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Electronic Supplementary Material†:

Derivation of the Auger decay rate for the 2p−1σ∗ state of HCl molecule

The Auger transition HCl(Ψi) → HCl+(Ψf ) + e−(ψϵ) occurs with a decay rate

Ai→f = 2π
∣∣∣〈Ψfψϵ

∣∣∣∑
i<j

1

rij

∣∣∣Ψi

〉∣∣∣2δ(Ei − Ef − ϵ), (1)

where Ψi and Ei are the initial state and energy of the HCl molecule and Ψf and Ef are the final state and energy
of the HCl+ molecular ion. The free Auger electron with kinetic energy ϵ and spin-projection msϵ is described by a
continuum state ψϵ, which is approximated by the sum of partial waves

ψϵ = |msϵ⟩
∑
lϵ,mϵ

|lϵmϵ⟩, (2)

centered on the Cl atom.
Specifically, we are interested in the initial state with one unpaired electron in the |2p;m 1

2ms⟩ spin-orbital and one

unpaired electron in the |σ∗; 01
2mσ′⟩ molecular orbital. The state has to be antisymmetric with respect to exchange of

any two electrons (denoted by {}) and has a total spin S′, spin projection M ′
S and the projection of the total orbital

angular momentum m. We decouple the state to the sum of products of spin-orbitals as

Ψi =
{
|2pσ∗;m,S′,M ′

S⟩
}
=

{ ∑
ms,mσ′

⟨1
2
ms

1

2
mσ′ |S′M ′

S⟩|2p;m
1

2
ms⟩|σ∗; 0

1

2
mσ′⟩

}
. (3)

The final state of the molecular ion consists of three unpaired electrons in spin-orbitals v and v′ and σ∗. Namely,
the σ∗ electron remains spectator in the Auger transition. The spins of the three electrons are coupled into the S,MS

state with Λ projection of the total orbital angular momentum. The unpaired vv′ electrons are spin-coupled to the
Svv′ ,MSvv′ state with the same Λ projection of the orbital angular momentum because the projection of the spectator
electron is zero:

Ψf =
{∣∣(vv′; ΛSvv′MSvv′ )σ

∗; ΛSMS⟩
}
. (4)

We represent the final state by the sum of uncoupled products of spin-coupled vv′ states and σ∗ electron as

Ψf =
{ ∑

msv,msv′

∑
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vv′ ,mσ

⟨1
2
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2
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2
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1

2
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1

2
msv′⟩|σ∗; 0

1

2
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}
.

(5)
The indices msv,msv′ and mσ run over the spin projections of the electrons in the v, v’ and σ∗ orbitals, respectively.
The Auger rate is then written as

Ai→f = 2π

∣∣∣∣{ ∑
msv,msv′
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}∣∣∣∣2.
This expression can be simplified using rules for Slater determinants that apply for orthogonal spin-orbitals. The
two electrons, that are missing to pair the unpaired vv′ electrons, are the only ones that change their spin-orbitals in
the transition to the final state: one is ejected as Auger electron and the other fills the singly occupied 2pm orbital.
Thus the only surviving terms are the direct and exchange two-electron matrix elements between these spin-orbitals.
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The spin of the third unpaired electron must not change for the Coulomb matrix element to be non-zero, so we have
mσ = mσ′ . When we contract the sums over msv,msv′ back to Svv′MS′ states we obtain

Ai→f = 2π
( ∑

MS
vv′ ,mσ,ms

⟨Svv′MSvv′
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mσ|SMS⟩⟨
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r12
|v′v; ΛSvv′MSvv′ ⟩

)∣∣∣∣2.
The Auger transition conserves the total spin and projection of the total spin, as well as the projection of the total
orbital angular momentum. To use these selection rules, it is convenient to represent the product of the 2p and the
continuum spin-orbitals with a linear combination of terms having exactly these good quantum numbers:∑

lϵ,mϵ
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′′,M ′′

S ⟩ (7)

The rate can be nonzero only if S′′ = Svv′ , M ′′
S =MSvv′ , and Λ = m+mϵ so that
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( ∑
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To compare to experiment, the rates have to be averaged over the initial spin projection M ′

S and summed over both
final spin projections MS and msϵ. Note, that two-electron Auger matrix elements do not depend on a particular
value of MSvv′ and not at all on any other spin projection, so that the averaged rate Ãi→f can be factored as follows
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∣∣∣∣∑
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)∣∣∣∣2S(S′, Svv′ , S).

Above we have denoted the direct and exchange matrix elements as Jvv′ and Kvv′ and defined a new spin factor S,
which depends on the spin of the initial state (S′ = 0, 1), on the spin of the vv′ holes (Svv′ = 0, 1) and on the spin of
the final state (S = 1/2, 3/2). Altogether this gives 8 possible combinations that evaluate to:

S(0, 0, 1/2) = 1, S(0, 0, 3/2) = 0, S(0, 1, 1/2) = 3, S(0, 1, 3/2) = 0,

S(1, 0, 1/2) = 1, S(1, 0, 3/2) = 0, S(1, 1, 1/2) =
1

3
, S(1, 1, 3/2) =

8

3
.

(8)

Integrating the rate over the Auger electron emission angles allows us to place the sum over the partial waves out
of the absolute value bars because the cross terms cancel out. Considering rates, averaged also over the projection of
the orbital angular momentum (m = −1, 0, 1) of the initial 2p hole, we finally have

Ãi→f =
π

3
S(S′, Svv′ , S)

∑
lϵ,mϵ,m

∣∣∣∣(Jvv′(Λ, Svv′ , lϵ,mϵ,m) + (−1)Svv′Kv′v(Λ, Svv′ , lϵ,mϵ,m)
)∣∣∣∣2. (9)

If we also want to average the rate over spin S′ = 0, 1 of the initial state, we replace the spin factor above with the
average spin-factor

S̃(Svv′ , S) =
1

4
S(0, Svv′ , S) +

3

4
S(1, Svv′ , S), (10)
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which evaluates to

S̃(0, 1/2) = 1, S̃(0, 3/2) = 0, S̃(1, 1/2) = 1, S̃(1, 3/2) = 2. (11)


