SUPPLEMENTARY INFORMATION

Motility-induced collapse of active Brownian particle polymer chain

Aleksandr Buglakov ^{1,2,*}, Vasilisa Lelecova ^{1,2}, Aleksandr Chertovich ^{1,2}

- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- 2. Lomonosov Moscow State University, Leninskie gory 1, 119991 Moscow, Russia

*corresponding author's e-mail: buglakov@polly.phys.msu.ru

Figure S2. Typical dependence of active polymer size Rg on simulation time with N = 4096and Pe = 20. Inset shows density distribution of Rg, obtained within Rg(t) plateau and collected over several independent runs (a). $\langle Rg(t)Rg(t+\Box) \rangle$ autocorrelation function for N= 4096 and Pe = 20 (b).

Figure S3. Dependency of gyration radius Rg on number of monomer units N(a), the ratio of the number of monomers of stretched segments f_{str} to the number of monomers of collapsed segments f_{col} as a function of N(b) and dependency of monomer dense cluster gyration radius R_g^{col} on N(c) at Pe = 15.

Fig. S5. Typical snapshots of the active chain with N = 1024, showing amplitudes and directions of the monomer units velocities (black arrows).

segments for different *Pe* within collapsed conformation region of N = 4096 active polymer chain (a); Bond-bond autocorrelation function along the chain ($<\cos\Box_{ij}>$, where \Box_{ij} is angle between) with N = 4096 and Pe = 15.