A density functional theory study of two-dimensional bismuth

selenite: layer-dependent electronic, transport and optical properties

with spin-orbit coupling[†]

Yao Wang, ^{1,2*} Jinsen Zhang, ^{1*} Xuanlin Zhang, ⁴ Chenqiang Hua, ^{3,a)} Yunhao Lu, ⁴ and Xinyong Tao¹

AFFILIATIONS

¹College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou,

310014, China

²Moganshan Research Institute at Deqing County Zhejiang University of Technology, Huzhou,

313000, China

³ Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China

⁴ School of Physics, Zhejiang University, Hangzhou 310027, China

*These authors contributed equally to this work.

^{a)} Author to whom correspondence should be addressed: <u>huachenqiang@buaa.edu.cn</u>.

FIG. S1. Electronic structures of (a) bulk and (b) $1L Bi_2 SeO_5$ calculated with HSE06 functional.

FIG. S2. (a, d) Electronic structures of bulk/2L Bi₂SeO₅. CB1, CB2 and CB3 are marked. Spatial distribution of wavefunction for the lowest CBs using an isosurface of 0.0008 eÅ⁻³ for bulk (b, c) and 2L (e, f) Bi₂SeO₅. For CB1, it is obvious to see that the interlayer charge distribution mimics the bonding-like behavior while antibonding-like for CB3. Besides, the perpendicular charge distribution always mixes some in-plane components, indicating the contribution of in-plane *p* orbitals.

FIG. S3. The variation of bandgap $E_g(m)$ as a function of layer number m. Inset: The blue dash line indicates the linear fitting. For (a), SOC is not considered while for (b), SOC is included.

Note 1. The quantum confinement effect of 2D Bi₂SeO₅.

To qualitatively explore the quantum confinement effect, we calculate the relationship between the bandgap (E_g) and the layer number (m). As shown in **Fig. S3-inset**, an obvious linear dependence between $\ln[E_g(m)-E_g(bulk)]$ and m can be observed. Such behavior indicates that E_g versus m follows the equation below,

$$E_{q}(m) = E(bulk) + \alpha \exp(-\beta m).$$
⁽¹⁾

where α and β are the characteristic parameters. The fitted curves are shown in **Fig. S3**, without considering SOC, the values of α and β are 0.58 and 0.77, respectively. When SOC is taken into account, the values of α and β are 0.41 and 0.83, respectively. This indicates that SOC plays a crucial role in the bandgap. With the above expression, it is convenient to predict the bandgap of multilayer Bi₂SeO₅ without the detailed calculation, which can accelerate the selection of 2D Bi₂SeO₅ with specific bandgap.

FIG. S4. Electronic band structure of 3L Bi₂SeO₅ with SOC (orange dashed lines). For easy comparison, we plot the bands without SOC together (blue solid lines). Green and black pentagrams represent CBM and VBM, respectively.

FIG. S5. Effective mass of (a, c) electrons and (b, d) holes along the Γ -X (blue) and Γ -Y (red) directions versus the number of layers. SOC is included for (c, d) with dashed lines.

FIG. S6. The variation of (a-b) σ/τ with different doping concentration at 300 K for 2D Bi₂SeO₅.

FIG. S7. (a) Transmission spectra of the Al/2L Bi_2SeO_5/Al device. (b) Transmission spectra of the $FeS_2/2L Bi_2SeO_5/FeS_2$ MTJ.

FIG. S8. *k*-resolved transmission coefficients for the $FeS_2/1L Bi_2SeO_5/FeS_2 MTJ$ for the (a) PC and (b) APC states. E = 0 eV.

FIG. S9. *k*-resolved transmission coefficients for the $FeS_2/2L Bi_2SeO_5/FeS_2 MTJ$ for the (a) PC and (b) APC states. E = 0 eV.

FIG. S10. TMR as a function of chemical potential (*E*) for (a) $FeS_2/1L Bi_2SeO_5/FeS_2$ and (b) $FeS_2/2L Bi_2SeO_5/FeS_2 MTJs$.

System	a (Å)	b (Å)	c (Å)	V (Å ³)
Exp. ¹	11.44	16.28	5.49	1022.48
PBE^2	11.64	16.68	5.57	1081.444
LDA ³	11.09	16.12	5.43	970.7254
DFT-D2 ⁴	11.41	16.47	5.52	1037.333
DFT-D3 ⁵	11.49	16.52	5.55	1053.472
DFT-D3 ⁶	11.37	16.41	5.52	1029.931
DFT-D4 ⁷	11.65	16.69	5.57	1083.022
TS^8	11.53	16.58	5.56	1062.891
TS/HI ^{9,10}	11.42	16.47	5.53	1040.123
MBD@rSC ^{11,12}	11.46	16.50	5.54	1047.559
MBD@rSC/FI13,14	11.64	16.68	5.57	1081.444
dDsC ^{15,16}	11.38	16.43	5.52	1032.093
DFT-ulg ¹⁷	11.43	16.48	5.54	1043.55
vdW-DF ¹⁸	11.71	16.80	5.63	1107.579
vdW-DF2 ¹⁹	11.68	16.87	5.66	1115.255
optPBE-vdW ²⁰	11.51	16.57	5.57	1062.314
optB88-vdW ²⁰	11.37	16.44	5.54	1035.552
optB86b-vdW ²¹	11.33	16.37	5.52	1023.806
rev-vdW-DF2 ²²	11.35	16.40	5.53	1029.354
vdW-DF-cx ²³	11.28	16.31	5.50	1011.872
rVV10 ²⁴	11.23	16.32	5.52	1011.67
SCAN+rVV10 ²⁵	11.21	16.18	5.46	990.3228

TABLE S1. Lattice constants and volume of bulk $\mathrm{Bi}_2\mathrm{SeO}_5$ calculated by using different

computational methods.

System	$(a - a_0)/a_0$	$(b - b_0)/b_0$	$(c - c_0)/c_0$	$(V - V_0)/V_0$
DFT-D3	-0.61	0.80	0.55	0.73
dDsC	-0.52	0.92	0.55	0.94
optB88-vdW	-0.61	0.98	0.91	1.28
optB86b-vdW	-0.96	0.55	0.55	0.13
rev-vdW-DF2	-0.79	0.74	0.73	0.67

TABLE S2. Relative differences between DFT and experimental results (unit: %). A_0 , b_0 , c_0 and V_0 are the lattice constants and volume measured in the experiment.

REFERENCES

- ¹C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan, L. Chen, M. Wu, R. Zhu, Y. Liu, H. Fu, J. Yu, Y. Zhang, X.
- Cong, X. Zhou, J. Zhao, T. Li, Z. Liao, X. Wu, K. Lai, B. Yan, P. Gao, Q. Huang, H. Xu, H. Hu, H. Liu,
- J. Yin, and H. Peng, Nat. Mater. 22, 832 (2023).
- ²J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ³P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
- ⁴S. Grimme, J Comput. Chem. 27, 1787 (2006).
- ⁵S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
- ⁶S. Grimme, S. Ehrlich, and L. Goerigk, J Comput. Chem. 32, 1456 (2011).
- ⁷E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J.
- Chem. Phys. 150, 154112 (2019).
- ⁸A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. **102**, 073005 (2009).
- ⁹T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
- ¹⁰T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Phys. 9, 4293 (2013).
- ¹¹A. Ambrosetti, A. M. Reilly, R. A. DiStasio, Jr., and A. Tkatchenko, J. Chem. Phys. **140**, 18A508 (2014).
- ¹²A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
- ¹³T. Gould and T. Bučko, J. Chem. Phys. **12**, 3603 (2016).
- ¹⁴T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, J. Chem. Phys. **12**, 5920 (2016).
- ¹⁵S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. **134**, 044117 (2011).
- ¹⁶S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 7, 3567 (2011).
- ¹⁷H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. **3**, 360 (2012).
- ¹⁸M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. **92**, 246401 (2004).
- ¹⁹K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
- ²⁰J. Klimeš, D. R. Bowler, and A. Michaelides, Journal of Physics: Condensed Matter 22, 022201 (2010).
- ²¹J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
- ²²I. Hamada, Phys. Rev. B **89**, 121103 (2014).
- ²³K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).

- ²⁴R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87, 041108 (2013).
- ²⁵H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Phys. Rev. X 6, 041005 (2016).