Supplementary Material

Ballistic transport in sub-10 nm monolayer InAs transistors for high-performance applications

Tianruo Xie¹, Yuliang Mao^{1,2†}

¹School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China ²Hunan National Applied Mathematics Center, Xiangtan University, Xiangtan 411105, China

[†]Corresponding author, E-mail address: ylmao@xtu.edu.cn

	$\mathbf{L}_{\mathbf{g}}$	ЕОТ	Vdd	UL	SS	Ioff	Ion	Ion/Ioff	τ(ps)	PDP
	(nm)	(nm)	(V)	(nm)	(mV/dec)	(µA/µm)	(µA/µm)			(fJ/µm)
n-type				0	261		_	_	_	_
				1	200.7		_	_		_
	4.0	0.41	0.64	2	176.2	0.1	26.5	2.6×10^{2}	81.7	0.046
				3	140		847.7	8.5×10 ³	0.249	0.045
				4	132.7		1064.9	1.1×10^{4}	0.328	0.097
	5.0	0.41	0.64	0	185.8	0.1	7.1	71	36.3	0.055
				1	162.4		107.5	1.1×10^{3}	2.554	0.059
				2	134.9		1230	1.2×10^{4}	0.247	0.065
				3	123.2		1327.5	1.3×10^{4}	0.205	0.056
				4	107.7		1741.8	1.7×10^{4}	0.126	0.053
p-type				0	367					
				1	252		_	_	_	_
	4.0	0.41	0.64	2	205.4	0.1				
				3	155.6		268.5	2.6×10^{3}	1.060	0.061
				4	143		445	4.4×10^{3}	0.504	0.030
				0	241		_	_	_	_
				1	194		17.7	1.7×10^{2}	12.15	0.046
	5.0	0.41	0.64	2	146	0.1	502	5.0×10 ³	0.968	0.103
				3	129		862	8.6×10 ³	0.426	0.078
				4	110		1011	1.0×10^{4}	0.345	0.074
ITRS HP 2028	5.1	0.41	0.64		_	0.1	900	_	0.423	0.243
n	7.5	0.49	0.69		112	0.1	2405.5	2.4×10^{4}	0.237	0.131
р	7.5	0.49	0.69	_	121	0.1	1124.4	1.1×10^{4}	0.457	0.118
ITRS HP 2024	7.3	0.49	0.68		—	0.1	1170	_	0.451	0.364
n	8.8	0.54	0.72		86.1	0.1	2660	2.6×10^{4}	0.264	0.168
р	8.8	0.54	0.72	_	100	0.1	2158	2.1×10^{4}	0.456	0.236
ITRS HP 2022	8.8	0.54	0.72		_	0.1	1330	_	0.463	0.45
n	10.1	0.56	0.74		75.9	0.1	2783	2.7×10 ⁴	0.330	0.221
р	10.1	0.56	0.74	_	73.1	0.1	2619	2.6×10^{4}	0.343	0.229
ITRS HP 2022	10.1	0.56	0.74		_	0.1	1450	_	0.477	0.51

Table S1. Summary of ballistic transport performance of optimized n/p-type ML InAsH₂ MOSFETs with sub-10 nm gate length against ITRS 2013 requirements for HP device when n-MOSFETs are under the doping concentration of 1.5×10^{13} cm⁻², and p-MOSFETs are under the doping concentration of 6.0×10^{13} cm⁻².

Table S2. Subthreshold swing SS and on-state current I_{on} of the *n*- and *p*-type DG ML InAsH₂ MOSFETs with the gate length $L_g = 5$ nm and UL = 2 nm under different doping concentrations against ITRS HP 2028 requirements.

L _g (nm)	UL (nm)		doping (cm ⁻²)	SS (mV/dec)	I _{on} (μΑ/μm)
	2	n-type	9×10 ¹²	144	902
			1.5×10 ¹³	135	1230
_			2.4×10^{13}	130	762
5		p-type	4.5×10 ¹³	141	492
			6.0×10 ¹³	146	502
_			7.5×10^{13}	156	274
ITRS HP 2028		900			

Figure S1. *I*-*V*^g characteristics of the *n*- and *p*-type DG ML InAsH₂ MOSFETs with $L_g = 5$ nm and *UL* = 2 nm with different electrode doping concentrations.

Figure S2. PLDOS and transmission spectra of p-type ML $InAsH_2$ MOSFETs with 5.0 nm-L_g at (a-c) off state and (d-e) on state.

Figure S3. Ion (a) and SS (b) of p-ML InAsH₂ MOSFETs with different ULs and dielectric layers.

Figure S4. Comparison of I_{on} for n- and p-type ML InAsH₂(this work), p-type Bi₂O₂Se₃, MoS₂, MoSSe, WSSe, InSe, WTe₂, MoTe₂ MOSFETs in ITRS HP applications.