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1 Volume of overlapping spheres

Consider two overlapping spheres, as shown below.

h

Suppose the distance between the two centres of the spheres is l0 (i.e. the bond length) and the
radius of each sphere is RC (i.e. the cut-off). The overlapping region can be considered as two spherical
caps, each with height h. The volume of one of the caps has a well-known formula, and be calculated
by

VCap =
πh2

3
(3RC − h). (1)

We can say that
l0 = 2RC − 2h, (2)

and rearranging for h yields h = RC − l0
2
. The total volume of the overlapping region is VOL,2 = 2VCap,

and substituting the expression for h finds that

VOL,2 =
π

12
(4RC + l0)(2RC − l0)

2. (3)

The volume which is outside of the overlapping region can be considered as the total volume of the
spheres, minus the part contained in the overlapping region. The total volume of the spheres is

VT = 2× 4πR3
C

3
(4)

Since the region inside the overlapping portion is for two spheres, the volume of this part needs to be
taken off twice, making the outside region

VOUT = VT − 2VOL,2 (5)

Now consider three overlapping spheres in a line, as shown below.

The central region where all three spheres overlap, can be calculated in a similar way as described
above, only with the separation between the central points being 2l0 as opposed to l0.

S1

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024



If we remove the central sphere, this can be visualised as below.

h

In this case, 2l0 = 2RC − 2h, reducing to h = RC − l0. Using the same formula for VCap, we find the
region of the three overlapping spheres is

VOL,3 =
2π

3
(2RC + l0)(RC − l0)

2, (6)

which is equivalent to replacing l0 in Eq. 3 with 2l0.
The region concerning two overlapping spheres can, in this case, be calculated as twice the volume

calculated using Eq. 3 (to account for the fact that there are two spheres) minus twice the volume
VOL,3. Finally, the volume outside all of the overlapping regions can be calculated as

VOUT = 3× 4πR3
C

3
− 2VOL,2 − 3VOL,3. (7)

In the main article, the above equations are generalised to molecules of any length N .
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2 Expected relation between excess chemical potential and volume

In our work, we have assumed that the effective excess chemical potential of a bead (or part of a bead)
can be related to the number of interactions NI it has with surrounding beads such that

µex ∝ NI ∝ V ρ (8)

where V is the volume of the fragment and ρ is the density of interacting particles inside it (i.e. the
bulk density ρ = 3). Here derive the origin of this assumption. We first do this by considering single,
unbonded beads of varying radius RC, before discussing the implications of this for the situation of
bonded beads with constant radius in our article.

2.1 Single beads of varying size

For single beads of varying size, the interaction potential Uij between bead i and particle j is given by:

Uij =
1

2
AijRC

(
1− rij

RC

)2

for rij < RC (9)

where Aij is the interaction parameter and RC is the cutoff radius. The total interaction potential Ui

of i with its surrounding j particles is

Ui =

∫ RC

0

Uij · ρ · 4πr2 dr (10)

where ρ is the bulk density (particles per unit volume). Substituting Uij

Ui = 2πρAijRC

∫ RC

0

(
1− r

RC

)2

r2 dr =
2πρAijR

4
C

30
(11)

This means that when the cut-off is varying, the potential of an individual bead Ui ∝ R4
C . It is

important to note that this expression represents the average potential a bead has with its surroundings.
In reality the potential will fluctuate with different insertion locations due to the fluctuating density
and distribution of particles it is surrounded with.

The excess chemical potential µex is defined as:

µex = − ln (⟨exp(−∆U)⟩) . (12)

We apply a cumulant expansion and this allows us to express µex in terms of the mean and variance of
∆U . The first few terms of the cumulant expansion can be expressed as:

ln⟨exp(−∆U)⟩ ≈ −⟨∆U⟩+ 1

2
Var(∆U) +O(⟨∆U3⟩). (13)

If we briefly consider the case where RC = 1, this allows us to understand Fig. 1 as presented in the
main article and provides a clearer understanding of the non-linear relationship between Aij and µex.
Although the term ⟨∆U⟩ scales linearly with the interaction parameter Aij, the second term, Var(∆U),
scales with A2

ij. This leads to an increasing deviation from a linear relationship as Aij becomes larger.
We now return to the case where we vary RC. Therefore we expect that we can roughly say that

we expect the resulting chemical potential µex ∝< ⟨∆U⟩. and we can choose to estimate the relation
between excess chemical potential and cut-off radius as µex = CR4

C where C is some constant that
varies for different values of the interaction parameter aij. We test this relation by performing Widom
insertion calculations of beads with aii = 25, 35, 45 and of varying size. In each case, the value of
C can be determined numerically from when RC = 1. The results of this simulation are plotted in
Fig. S1, and also shown is the expected µex = CR4

C relationship. We see that there is extremely
good matching between the predicted and simulated values. Of course µex deviates slightly from the
µex = CR4

C relation since the variance term is actually ∝ (∆U)2.
What we have shown is that, in this case, is µex ∝ R4

C rather than ∝ R3
C (i.e. the volume) as we have

assumed in the main article, which is a result of the potential Uij varying as a function of distance.
However, we now consider the difference between this and the case of bonded beads of constant size,
and the impact that this assumption has.
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Fig. S1: Relationship between the excess chemical potential µex and the bead cut-off RC for single beads inserted into
solvent with self-interaction aii = 25. Scatter points represent the simulated values calculated via Widom insertion, while
the dashed line is the expected µex = CR4

C relationship (where C = µex(RC = 1)).

2.2 Bonded beads

We now consider the case relevant to the simulations in the main article, where we have a series of
bonded beads which are all of the same size RC. In this case, the total volume of the inserted molecule
is changing due to the insertion of multiple beads at once, rather than altering the size of the beads
via the cut-off. If we first consider the situation in which multiple beads are simultaneously inserted
but not overlapping, where each bead interacts with the solvent with interaction parameter Aij. In this
case, the average potential energy change ∆Ui is (on average) the same for every bead. This implies
that µex is proportional to the number of beads NB at fixed radii RC (i.e. NB multiples of ∆U in Eq.
11). Now, when the beads are overlapping the situation is slightly more complicated.

If we consider the insertion of two bonded beads which have a region in which they overlap with
volume VIn and a region where they don’t VOut. The number of solvent beads contained within each of
those regions is expected to be proportional to their volume. However, the volume is not proportional to
the total potential energy of this region because they contain beads which are of varying distances from
the centre of the solute beads (and the potential varies with rij as shown in Eq. 9). This means that,
theoretically, one should calculate ∆U for the total molecule for summing up the individual portions of
∆UIn and ∆UOut, however, this is a complex calculation. Therefore, in this work, we aim to see if we
can simply by scaling each other contributing regions by their volumes instead, neglecting this distance
dependence on the potential energy.

Mathematically we now describe this situation. Suppose that, for a given system, the total potential
energy change ∆U for inserting molecule i is proportional to the number of solvent beads it interacts
with (upon insertion), multiplied by the average potential energy of an interaction. Mathematically,
we can write:

∆Ui ∝ Nbeads · ⟨Uinteraction⟩ (14)

where Nbeads is the number of solvent beads interesting with i and ⟨Uinteraction⟩ is the average potential
energy per interaction. Furthermore, we say that the number of beads Nbeads is proportional to the
volume Vi of the molecule, so Nbeads ∝ Vi. Thus, we can approximate ∆Ui as:

∆Ui ∝ Vi · ⟨Uinteraction⟩. (15)

Where we have here made the simplification to remove the distance dependence of Uij between i and its
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interacting particles. When considering a series of bonded beads, we can decompose the total potential
energy change ∆U into two components:

• ∆UIn, which corresponds to the beads interacting with the molecule within the overlapping region.

• ∆UOut, which pertains to the beads outside the overlap.

If ∆UIn and ∆UOut are proportional to their respective volumes VIn and VOut, we can express them as:

∆UIn = VIn uIn and ∆UOut = VOut uOut (16)

where we now consider the volumes as scaled to the volume of a single bead (i.e the actual volume divided
by 4π/3) and uIn and uOut are the corresponding energies of single beads. In this representation, we
expect that the total excess chemical potential of the molecule could be calculated as

− ln (⟨exp (− (VIn uIn + VOut uOut))⟩) (17)

Using a cumulant expansion, we get:

− ln (⟨exp (− (VIn uIn + VOut uOut))⟩) ≈ ⟨VIn uIn + VOut uOut⟩

− 1

2

(
⟨(VIn uIn + VOut uOut)

2⟩ − ⟨VIn uIn + VOut uOut⟩2
)
+ · · · (18)

Therefore, we have

• First cumulant (mean):

⟨VIn uIn + VOut uOut⟩ = VIn ⟨uIn⟩+ VOut ⟨uOut⟩ (19)

• Second cumulant (variance):

⟨(VIn uIn + VOut uOut)
2⟩ − ⟨VIn uIn + VOut uOut⟩2 (20)

Expanding the variance term produces

V 2
In

(
⟨u2

In⟩ − ⟨uIn⟩2
)
+ V 2

Out

(
⟨u2

Out⟩ − ⟨uOut⟩2
)
+ 2VInVOut (⟨uInuOut⟩ − ⟨uIn⟩⟨uOut⟩) (21)

Therefore, up to the second cumulant, we have

− ln (⟨exp (− (VIn uIn + VOut uOut))⟩) ≈ VIn ⟨uIn⟩+ VOut ⟨uOut⟩

− 1

2

(
V 2
In Var(uIn) + V 2

OutVar(uOut) + 2VInVOutCov(uIn, uOut)
)

(22)

We will assume that the covariance term is small compared to the variances, allowing us to focus
primarily on the variance contributions, such that

− ln (⟨exp (− (VIn uIn + VOut uOut))⟩) ≈ VIn ⟨uIn⟩+ VOut ⟨uOut⟩ −
1

2

(
V 2
In Var(uIn) + V 2

OutVar(uOut)
)
(23)

In our main article, we have essentially used the assumption that µex ≈ VIn ln(⟨exp(−uIn)⟩) −
VOut ln(⟨exp(−uOut)), rather than using − ln (⟨exp (− (VIn uIn + VOut uOut))⟩), which would require the
Widom insertion of the entire molecule to calculate. If we take this expression and each term, we have:

−VIn ln (⟨exp(−uIn)⟩)−VOut ln (⟨exp(−uOut)⟩) ≈ VIn⟨uIn⟩+VOut⟨uOut⟩−
1

2
(VIn Var(uIn) + VOutVar(uOut))

(24)
Which differs from Eq. 23 in the scaling of the variance terms. The original expression can be

rewritten as

− ln (⟨exp (− (VInuIn + VOutuOut))⟩) ≈ −VIn ln (⟨exp(−uIn)⟩)− VOut ln (⟨exp(−uOut)⟩)

+
1

2
(VIn(VIn − 1)Var(uIn) + VOut(VOut − 1)Var(uOut)) (25)

highlighting the difference between the calculation method used in our article, and the theoretical
expression. We essentially assume that the final term is small, relative to the −VIn ln (⟨exp(−uIn)⟩) −
VOut ln (⟨exp(−uOut)⟩) part. In fact, V (V − 1) is very small and negative when V < 1. Recalling that
VIn and VOut are the volume scaled to the volume of a single bead, neither VIn or VOut should exceed a
value of 1 until the bond length 0.7 < l0. This may explain why our correction method works less well
for longer bond lengths (such as l0 = 1), where this unaccounted-for term begins to grow.
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3 Relation between µex and aij

We highlighted in the main article, that the relationship presented between µex and aij in Fig. 1 is only
valid when aii = 25 and density ρ = 3. Here we show the relationship between µex and aij for more
solvent cases in Fig. S2.
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Fig. S2: Calculated relationship between the excess chemical potential µex and interaction parameter aij for the Widom
insertion into solvents with different aii. In the bonded case we use solvent molecules with length N = 3 and l0 = 0.6.
The fit presented by the black line is for the single bead cases with aii = 25, as shown in the main article.

We see that the divergence between different solvent cases grows with increasing aij. In particular,
the difference between the bonded case at aii = 28.9 and unbonded case at aii = 25 is negligible
for aij < 45. In our calculations to determine the partitioning of beads between bonded solvents we
only ever use cross interactions of aij ≤ 45, meaning we can consider it appropriate to use the fitted
expression for single beads.
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4 Simulation results for Fig. 5

The simulated values are calculated by fitting a straight line of best fit to the value of lnK as a
function of concentration. We then extrapolate to zero concentration to find our final value for lnK at
infinite dilution. Therefore, the standard deviation listed below is taken as the standard deviation of
the y-intercept.

N aAC aBC ln(K), uncorrected µ l0 ln(K), corrected µ ln(K), simulated Standard deviation

2

25 30 3.41
0.4 2.29 2.418 0.040
0.6 2.52 2.787 0.007
1 2.92 3.394 0.029

30 32.5 1.56
0.4 1.03 1.038 0.026
0.6 1.13 1.282 0.004
1 1.32 1.425 0.039

30 35 3.03
0.4 2.13 1.990 0.035
0.6 2.31 2.354 0.012
1 2.63 2.956 0.044

30 37.5 4.41
0.4 2.97 2.956 0.028
0.6 3.26 3.373 0.028
1 3.77 4.248 0.033

32.5 40 4.15
0.4 2.77 2.556 0.038
0.6 3.05 3.131 0.022
1 3.54 3.946 0.223

30 40 5.71 0.6 4.18 4.443 0.069
30 31 0.635 0.6 0.462 0.488 0.012

3

25 30 5.12
0.4 2.85 2.963 0.008
0.6 3.31 4.016 0.098

30 32.5 2.34
0.4 1.32 1.22 0.023
0.6 1.51 1.631 0.068
1 1.87 1.968 0.080

30 35 4.54
0.4 2.69 2.452 0.050
0.6 3.07 3.166 0.013

31 35 3.59
0.4 2.15 1.980 0.037
0.6 2.46 2.435 0.060
1 2.98 3.113 0.129

32.5 37 3.87
0.4 2.30 1.966 0.032
0.6 2.60 2.880 0.077
1 3.16 3.526 0.037

4
30 35 6.06 0.6 3.84 4.239 0.057
32.5 36 4.06 0.6 2.62 2.407 0.045
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5 Simulation results for Fig. 6

Similarly as described for Fig. 5, we find a standard deviation for each simulated value from its line of
best fit. Here we show the standard deviation in brackets for each simulation.

N aAC aBC l0 Simulated ln(K) Simulated ln(K), Predicted
uncorrected solvent corrected solvent ln(K)

2

30 35
0.6 0.941 (0.004) 1.502 (0.016)

1.71
1.0 0.929 (0.011) 1.281 (0.017)

25 40
0.6 3.905 (0.029) 4.574 (0.060)

4.56
1.0 4.049 (0.014) 4.440 (0.046)

25 35
0.6 2.660 (0.011) 3.239 (0.013)

3.22
1.0 2.701 (0.008) 3.040 (0.022)

30 40
0.6 2.259 (0.010) 2.860 (0.019)

2.86
1.0 2.285 (0.031) 2.652 (0.041)

35 30
0.6 -2.084 (0.007) -1.586 (0.017)

-1.71
1.0 -2.190 (0.019) -1.881 (0.016)

40 25
0.6 -5.038 (0.049) -4.568 (0.031)

-4.56
1.0 -5.312 (0.087) -5.275 (0.029)

4

30 35
0.6 0.615 (0.006) 1.419 (0.008)

1.71
1.0 0.618 (0.010) 1.151 (0.021)

25 40
0.6 3.539 (0.017) 4.554 (0.046)

4.56
1.0 3.720 (0.037) 4.391 (0.012)

25 35
0.6 2.295 (0.004) 3.133 (0.023)

3.22
1.0 2.421 (0.012) 3.015 (0.023)

30 40
0.6 1.856 (0.010) 2.816 (0.026)

2.86
1.0 1.929 (0.005) 2.471 (0.024)

35 30
0.6 -2.366 (0.029) -1.659 (0.003)

-1.71
1.0 -2.508 (0.021) -2.022 (0.023)

40 25
0.6 -5.340 (0.048) -4.781 (0.064)

-4.56
1.0 -5.727 (0.064) -5.212 (0.069)
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6 Bonding both the solute and solvent (section 4)

In this section, we expand what is discussed in section 4 of the main article, to study systems with both
bonded solute and bonded solvent, combining the bonding effects discussed thus far. We do a number
of tests to study two different lengths of the bonded solute (N = 2 and N = 3, represented by type C
beads). In these simulations, one of the solvents is unbonded (type B), and the other (type A) is bonded
into molecules of lengths N = 2, 3 and 4 beads long. As discussed above, we alter the self-interactions
of the bonded beads accordingly, to match the desired pressure. We calculate the expected values of
the chemical potential making use of our corrected equations. In this short study, we use a bond length
l0 = 0.6RC for all calculations.

Fig. S3 shows the value of ln(K) from simulation results, compared with the predicted value.
Generally, we find reasonable agreement between the calculated and simulated values (noting that once
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Fig. S3: Partitioning of bonded solutes into two solvents where one solvent is bonded. The length of the solute molecule
is represented by colour where N = 2 (orange) and N = 3 (purple). The length of the solvent molecule is represented by
symbols: 2 (+), 3 (⃝) and 4 (△)

again, all values shown in Fig. S3 can be found in the ESI). In all cases, K is defined as the ratio of
the concentration in the bonded solvent to the concentration in the unbonded solvent (K = cA/cB),
therefore we can also consider the impact of setting the aAB < aAC compared with aAC < aAB. Note
that, theoretically, the partitioning should be equivalent for, for example, when aAB = 25 and aAC = 40
compared with when aAB = 40 and aAC = 25. The mean squared error for different solute and solvent
lengths is shown in Table S.1, highlighting that the error increases with molecular length for the solute.

N (solute) N (solvent) MSE
2 2 0.086

3 0.096
4 0.057

3 2 0.092
3 0.25
4 0.14

Table S.1: Mean squared error (MSE) in ln(K) for simulations of a bonded solute partitioning into two solvents where
one solvent is bonded.
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6.1 Simulation results for Fig. S3 (in ESI)

N (solute) N (solvent) aAC aAB lnK (simulated) lnK (calculated)

2

2

37.5 30 -3.51 -3.26
30 37.5 3.36 3.26
40 30 -4.59 -4.18
30 40 4.70 4.18
35 30 -2.30 -2.31
30 35 2.40 2.31

3

37.5 30 -3.76 -3.26
30 37.5 3.30 3.26
40 30 -4.68 -4.18
30 40 4.42 4.18
35 30 -2.42 -2.31
30 35 2.27 2.31

4

35 30 -2.46 -2.31
30 35 2.14 2.31
37.5 30 -3.62 -3.26
30 37.5 3.26 3.26
40 30 -4.62 -4.18
30 40 4.25 4.18

3

2

36.2 30 -3.91 -3.70
30 36.2 4.12 3.70
37.5 30 -4.65 -4.37
30 37.5 4.60 4.37
35 30 -3.53 -3.07
30 35 3.10 3.07

3

36.2 30 -4.27 -3.70
30 36.2 3.43 3.70
37.5 30 -5.38 -4.37
30 37.5 4.39 4.37
35 30 -3.34 -3.07
30 35 3.04 3.07

4

36.2 30 -4.19 -3.70
30 36.2 3.69 3.70
37.5 30 -5.04 -4.37
30 37.5 4.14 4.37
35 30 -3.31 -3.07
30 35 2.82 3.07
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7 Bond lengths calculations (section 5)

Bonded interactions N aAC aBC Actual BL
Off 2 30 32.5 0.58218874141325
Off 2 30 35 0.5818081242215943
Off 3 30 32.5 0.5812385388202481
Off 3 31 35 0.5809933109424414
On 2 30 32.5 0.6149366221766263
On 2 30 37.5 0.6149742633567045
On 3 30 32.5 0.6146860837951208
On 3 31 35 0.614537005215961
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8 Simulation data for Fig. 12

N aAC aBC Original lnK (off) lnK (on)
3 30 32.5 1.631 (0.068) 1.650 (0.062)
3 31 35 2.435 (0.060) 2.403 (0.070)
3 30 35 3.166 (0.013) 3.052 (0.556)
3 25 30 4.016 (0.098) 3.918 (0.069)
2 30 32.5 1.282 (0.004) 1.231 (0.044)
2 30 37.5 3.373 (0.028) 3.579 (0.023)
2 32.5 40 3.131 (0.022) 3.275 (0.055)
2 30 35 2.354 (0.012) 2.445 (0.016)
2 25 30 2.787 (0.007) 2.853 (0.021)

9 Pressure when bonded interactions turned on (section 5)
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Fig. S4: Bulk pressure when bonded beads are allowed to interact, and where the bond length l0 and the number of
bonded beads N is varied. Also shown (black) is the bulk pressure of unbonded beads at the same number density.
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10 Real Molecules

Note that the relation between infinite dilution activity coefficient (IDAC) and ∆µex is provided in our
previous work,3 and this relationship will be used here to define the cross interaction aij parameters.
The coarse-graining description of all molecules is provided in the main article. In all cases, we need
to define the interaction of the solute bead with water and dodecane. The interaction of water and
dodecane themselves is simply defined as aij = 100, which is just chosen to correctly reproduce the
phase separation of oil and water, and produce a negligible solubility of one within the other. The
self-interaction of the solute itself and the self-interaction of dodecane is defined using the ‘pressure
matching’ approach described in the main article.

10.0.1 Diethyl carbonate

We use experimental IDAC values to define the interactions of the diethyl carbonate beads with water
and dodecane. First, we use the IDAC values to calculate a value for ∆µex, which is defined as the
difference in excess chemical potential of the solute bead at infinite dilution in a solvent, and the excess
chemical potential of the solute in a bath of its pure state (see reference3 for more details). The IDAC
for diethyl carbonate in water at room temperature is γ = 374,2 meaning we calculate ∆µex = 4.06. The
reported value1 for the partitioning of diethyl carbonate between water and dodecane is lnK = 1.34,
implying that for diethylene carbonate in dodecane ∆µex = 2.72.

These ∆µex values allow us to calculate the cross-interaction parameters of diethyl carbonate with
dodecane aCD and diethyl carbonate with water aCW. When no corrections are applied to account for
the overlap of bonded bead (what we refer to as ‘uncorrected’ values), we calculate aCW = 32.13 and
aCD = 34.39. However, using our equations from the main article we calculate ‘corrected’ aij parameters
(i.e., accounting for the overlap) as aCW = 33.9 and aCD = 37.0.

10.1 Heptanol

Calculating the interaction values for heptanol is slightly more difficult, due to the presence of multiple
bead types in the solute. We use a combination of experimental values to find the target excess chemical
potentials µex for each interaction type. The experimental data is shown in Fig. S5. The target excess

2 3 4 5 6 7 8 9
Number of carbon atoms NC
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ex

Alkanols (dodecane to water)
1.447481 NC + -7.853745
Alkanes (self to water)
1.492569 NC + 1.472010
Alkanols (self to water)
1.244254 NC + -2.710259

Fig. S5: The experimental data used to calculate the interaction parameters for heptanol in water and dodecane. Data
obtained from the infinite dilution activity coefficients of alkanes in water (blue)1 and alkanols in water (red),4 and also
the partitioning of alkanols in dodecane/water (black).6
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chemical potential difference per bead using this data is presented below, where values are presented
in units of kBT . Here we have used a combination of extrapolation and gradients from lines of best fit
to determine these values.

Bead Name C3T C3 COH
Water 5.078448 4.342443 -1.998783
Dodecane 0 0 5.143486

When no corrections are applied to account for the overlap of bonded beads, the parameters are
calculated as shown.

Bead Name C3T C3 COH Water Dodecane
C3T 25 - - - -
C3 25 25 - - -

COH 25 25 25 - -
Water 42.0865 39.1341 19.8074 25 -

Dodecane 25 25 42.3575 100 25

When the overlap of the solute is corrected for, this increases the self-interaction.

Bead Name C3T C3 COH Water Dodecane
C3T 28.9 - - - -
C3 28.9 28.9 - - -

COH 28.9 28.9 28.9 - -
Water 48.0852 44.7092 23.2402 25 -

Dodecane 28.9 28.9 48.3962 100 29.4

And finally, also correcting for the overlap of the solute as well results in the following final aij values.

Bead Name C3T C3 COH Water Dodecane
C3T 28.9 - - - -
C3 28.9 28.9 - - -

COH 28.9 28.9 28.9 - -
Water 60 60 20 25 -

Dodecane 28.9 24.5 60 100 29.4

The exact excess chemical potential for each bead is difficult to match for exactly, due to the large
degree of overlap. The estimated excess chemical potential of each beadin both dodecane and water is
shown below.

C3T C3 COH Total Experimental Total
Water 5.53569353 2.37108002 -0.4789928 7.42778 7.42211

Dodecane -0.22311797 1.07678837 4.2910837 5.14475 5.143486

Our correction tries to capture the variation of excess chemical potential across the molecule, while
making sure to match the total excess chemical potential expected for the molecule.

10.2 Benzene

The self-interaction term for ring-like molecules is not presented in the main article. Therefore, we
determine the value of this by performing a similar procedure to the other cases, where we find the aBB

value required to generate the correct value for the pressure (i.e., the pressure for single beads). Using
the bond length and angle potentials described for benzene in the main article, this is determined to
be aBB = 49.7.

Once again, we use experimental infinite dilution activity coefficient values to define the interactions
of the benzene beads with water and dodecane. The IDAC for benzene in water is experimentally
reported as γ = 2400,4 and therefore we determine that ∆µex ≈ 6.18. For benzene in dodecane,
experimentally γ = 1.3, and therefore ∆µex = 1.20.5 If we assume that the total excess chemical
potential of the ring is simply the sum of the 3 bead excess chemical potentials (no overlap correction),
we calculate the aij values as aBD = 51.8 and aBW = 61.2
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In order to set the aij values accounting for the overlap, we need to know the volumes V1, V2 and
V3. Once again, this is not presented in the main article for rings, as the analytical function would
be quite complex for their configuration. Therefore, instead we do this by performing a Monte Carlo
calculation and determining the volumes as a function of the bond length. In this simulation we simply
define the beads in a cuboid simulation domain, and then we generate random points within this space,
determining the ones which are generated within the radius beads (or within multiple beads). The
volume is calculated using the fraction of points that lie inside the bead’s spheres. The results of
these calculations are shown in Fig. S6. Having determined V1, V2 and V3, this allows us to determine
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Fig. S6: The relationship between the volumes of overlap Vi (relative to the volume of a single bead) and the bond length
in a triangular formation of beads. These volumes are calculated from a simple Monte Carlo simulation.

corrected aij parameters as aBD = 52.6 and aBW = 65.1.
However, we note that these aij values are too high for the µex vs. aij relationship to hold as it

is presented in the main article (Eq. 17). Differences between this relationship and bonded cases can
emerge, particularly when aij is larger. Our aij are relatively large due to the fact that the benzene
self-interaction is also large. This is a result of the short distance bonds in the molecule, and large
degree of overlap. Since the benzene-water and benzene-dodecane interactions are set relative to this
self-interaction, this produces large aij values for all cross interactions.

However, in order to investigate whether the correct partitioning of rings is produced, we can simply
change the reference interaction. The partitioning behaviour is actually only related to the difference
in excess chemical potential of the benzene-water and benzene-dodecane interactions, i.e. it depends
on µBD

ex − µBW
ex (see Eq. 27 in the main article), rather then the exact values themselves. Therefore,

for the study shown here, we choose to define the benzene-dodecane as aBD = 25, and adjust the
aBW interaction accordingly, to generate the correct µBD

ex − µBW
ex . We note once again, that this would

produce the wrong behaviour between benzene and dodecane relative to pure benzene, however would
still reproduce the correct partitioning behaviour. If one wanted to define this system fully (for studying
something other than partitioning behaviour), one should use a µex vs. aij relationship calculated at
higher aij values for a bonded solute. However, as we are interested in studying the partition behaviour
(at infinite dilution) only, the choice to set aBD = 25 has no impact on the results.

Therefore we recalculate the ‘uncorrected’ cross-interaction aij parameters to be aBD = 25 and
aBW = 29.86. Correcting for the overlap similarly produces aBD = 25 and aBW = 34.7. This allows us
to study the partitioning behaviour of rings without needing to perform additional simulations to those
already presented here and those in the main article.
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2V. Dohnal, P. Vrbka, K. Řehák, A. Böhme, and A. Paschke. Activity coefficients and partial molar
excess enthalpies at infinite dilution for four esters in water. Fluid Phase Equilibria, 295(2):194–200,
2010.

3R. L. Hendrikse, C. Amador, and M. R. Wilson. Many-body dissipative particle dynamics simulations
of micellization of sodium alkyl sulfates. Soft Matter, 20:6044–6058, 2024.

4K. Kojima, S. Zhang, and T. Hiaki. Measuring methods of infinite dilution activity coefficients and a
database for systems including water. Fluid Phase Equilibria, 131(1):145–179, 1997.

5T. Letcher and W. Moollan. The determination of activity coefficients at infinite dilution using g.l.c.
with a moderately volatile solvent (dodecane) at the temperatures 280.15 k and 298.15 k. The Journal
of Chemical Thermodynamics, 27(9):1025–1032, 1995.

6M. Manabe, M. Koda, and K. Shirahama. Partition Coefficients of Alkanols and Polyoxyethylene
Alkyl Ethers in the Dodecane–Water System at 25 °C. Bulletin of the Chemical Society of Japan,
48(12):3553–3556, 03 2006.

S16


