Supporting Information

The Impact of Side-Chain Fluorination on Proton-Bound Phenylalanine Dimers: A Cryogenic Infrared Spectroscopic Study

Marc Safferthal, ^{‡ab} Kim Greis, ^{‡abc} Rayoon Chang, ^{‡ab} Chun-Wei Chang, ^{ab} Waldemar Hoffmann, ^{ab} Gerard Meijer, ^b Gert von Helden ^b and Kevin Pagel ^{*ab}

- a Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Altensteinstraße 23a, 14195 Berlin, Germany.
- b Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
- c Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 10, 8093, Zürich, Switzerland.
- * Corresponding author. E-mail: <u>kevin.pagel@fu-berlin.de</u>
- [‡] These authors contributed equally to this work.

Fig. S1: Mass spectra of *ortho*- (oF-Phe), *meta*- (*m*F-Phe), *para*- (*p*F-Phe) and pentafluorophenylalanine (F_5 -Phe) recorded on the helium droplet instrument. The proton-bound dimers [2M+H]⁺ of the monofluorinated (*m/z* 367) and pentafluorinated phenylalanines (*m/z* 511) are generated by nESI.

Fig. S2: Comparison of experimental IRMPD and cryogenic IR spectra of a) $(oF-Phe)_2H^+$, b) $(mF-Phe)_2H^+$, c) $(pF-Phe)_2H^+$, and d) $(F_5-Phe)_2H^+$.

Fig. S3: a) Infrared spectra of the proton-bound homodimer of *ortho*-fluorophenylalanine. Experimental IR spectra are depicted as light blue traces. Computed spectra of the low-energy conformers are shown as gray inverted traces. Relative free energies at 90 K are indicated. b) Low-energy structures of the A type interaction for $(oF-Phe)_2H^+$.

Fig. S4: a) Infrared spectra of the proton-bound homodimer of *meta*-fluorophenylalanine. Experimental IR spectra are depicted as light blue traces. Computed spectra of the low-energy conformers are shown as gray inverted traces. Relative free energies at 90 K are indicated. b) Low-energy structures of the A type interaction for $(mF-Phe)_2H^+$.

Fig. S5: a) Infrared spectra of the proton-bound homodimer of *para*-fluorophenylalanine. Experimental IR spectra are depicted as light blue traces. Computed spectra of the low-energy conformers are shown as gray inverted traces. Relative free energies at 90 K are indicated. b) Low-energy structures of the A type interaction for (*p*F-Phe)₂H⁺.

Fig. S6: Computed lowest-energy structures of the proton-bound monofluorinated dimers.

derivative	type	conformer	ΔE	ΔF
(oF-Phe)₂H⁺	А	1	0.0 kJ mol ⁻¹	0.0 kJ mol-1
(oF-Phe)₂H⁺	А	2	0.5 kJ mol ⁻¹	1.4 kJ mol ⁻¹
(oF-Phe)₂H⁺	А	3	1.3 kJ mol ⁻¹	1.9 kJ mol ⁻¹
(oF-Phe)₂H⁺	В	1	3.2 kJ mol ⁻¹	2.4 kJ mol-1
(oF-Phe)₂H⁺	Z	1	3.6 kJ mol ⁻¹	3.1 kJ mol-1
(<i>m</i> F-Phe)₂H⁺	А	1	0.3 kJ mol ⁻¹	0.0 kJ mol-1
(<i>m</i> F-Phe)₂H⁺	А	2	0.0 kJ mol ⁻¹	0.3 kJ mol-1
(<i>m</i> F-Phe)₂H⁺	А	3	0.2 kJ mol ⁻¹	0.8 kJ mol-1
(<i>m</i> F-Phe)₂H⁺	В	1	3.4 kJ mol ⁻¹	4.9 kJ mol-1
(<i>m</i> F-Phe)₂H⁺	Z	1	9.4 kJ mol ⁻¹	9.3 kJ mol ⁻¹
(<i>p</i> F-Phe)₂H⁺	А	1	0.0 kJ mol ⁻¹	0.0 kJ mol ⁻¹
(<i>p</i> F-Phe)₂H⁺	А	2	3.0 kJ mol ⁻¹	1.1 kJ mol ⁻¹
(<i>p</i> F-Phe)₂H⁺	А	3	4.3 kJ mol ⁻¹	2.5 kJ mol ⁻¹
(<i>p</i> F-Phe)₂H⁺	В	1	12.5 kJ mol ⁻¹	13.4 kJ mol ⁻¹
(<i>p</i> F-Phe)₂H⁺	Z	1	16.7 kJ mol ⁻¹	18.2 kJ mol ⁻¹
(F₅-Phe)₂H⁺	A	1	0.0 kJ mol ⁻¹	0.0 kJ mol ⁻¹
(F₅-Phe)₂H⁺	В	1	4.8 kJ mol ⁻¹	2.5 kJ mol ⁻¹
(F₅-Phe)₂H⁺	Z	1	3.2 kJ mol ⁻¹	2.8 kJ mol ⁻¹

Table S1: Relative zero-point corrected total energies (ΔE) and free energies (ΔF) of selected

conformers.

xyz-coordinates of reoptimized structures

xyz-Coordinates of all reoptimized geometries at the PBE0+D3BJ/6-311+G(d,p) level of theory can be found in a separate document "coordinates.xyz".

Fig. S7: Non-covalent interaction (NCI) analysis of lowest-energy type A conformers for monofluorinated phenylalalanine dimers. Reduced density gradient isosurface map (left) and scatter plot (right) for a) (*oF-Phe*)₂H⁺, b) (*mF-Phe*)₂H⁺, and c) (*pF-Phe*)₂H⁺.

Fig. S8: Non-covalent interaction (NCI) analysis of $(F_5-Phe)_2H^+$ conformers. Reduced density gradient isosurface map (left) and scatter plot (right) for the lowest-energy conformers of a) type A, b) type B, and c) type Z interaction.