Supporting Information for the paper:

Pressure-Dependent Kinetic Analysis of the N₂H₃ Potential Energy Surface

Michal Keslin,^a Kfir Kaplan,^a Alon Grinberg Dana^{a,b,*}

^aWolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel ^bGrand Technion Energy Program (GTEP), Technion – Israel Institute of Technology, Haifa 3200003, Israel * Corresponding author, <u>alon@technion.ac.il</u>, +972-73-378-2117

Table S1: Stationary points geometries, T1 diagnostic factors, and imaginary frequencies

<u>н</u> Н		0.	0		0.	0			6	9.	0							
T1: 0.	000																	
<u>H2</u>																		
N		0.	0		0.	0			0).	37	002	25					
Ν		0.	0		0.	0			- (9.	37	002	25					
T1: 0.	012																	
<u>NH(1</u>	<u>)</u>	_			_		_			_		_						
N L	0.	0		0.0	•)		0	.!	51 51	L7 17	94	3 z						
п	0.	0		0.0	J		- 0	•••	51	L /	74	5						
T1: 0.	001																	
<u>NH2</u>	0	000	0.07	7		0	,	<u>م</u> .	70	- /	F		0	0				
N H	-0	803	124 158	3	_	0 . A	.4 2	1	35 13	54 31	5 1		0. A	0 A				
H	0.	803	34	6	-	0	. 2	1	22	23	3		0.	0				
T1·0	008																	
11.0.	000																	
NNH																		
N	-0.	068	857	5		0	. 3	7	80	98	2		0.	0				
Ν	0.	986	11	8	-	0	.1	.3	40	98	8		0.	0				
Н	-0.	917	'54	3	-	0	. 2	4	39	99	4		0.	0				
T1: 0.	028																	
t-N2F	<u>12</u>																	
Ν		-0.	93	185	58			0	.8	33	21	07		6).(99	91	99
N		-2.	16	969	72			0	. 7	77	31	96		0).1	19	85	71
H		-0.	56	405	8			0	•••	/5 / 5	33	15		1	L.(95 75	34 57	57
п		-2.	55	/45	12			U	• •	50	19	00		-0	J	/ 5	00	0/
T1: 0.	013																	
<u>c-N2I</u>	<u>12</u>		04	70			_		~ -							70	~ ′	
N N	- t).92) 14	.77 .77	/⊍ /\ว			ป. ว	7	95 10	97 קרנ	່ວ/ ວ/		0 0	1.1 1 1	∟ຽ∶ ∣ວ≀	/⊍' ק1	74 1.7	
н	- 2 _ r		273 287	ч∠ 61		,). 1	7. 7'	17 76	ក ក្រ	74 61		0 A	ב.י 1 ו	ר∠ו ו∩י	5. 2 T	ч7 82	
H	-2	2.61	.46	30			1.	6	42	49	30		-0	0.0	001	12	76	
T1· 0	013																	
	010																	

H2NN (singlet ground state)

Ν	-0.013141	0.002511	0.243320
Ν	0.996077	-0.190324	-0.402690
Н	-0.476744	-0.727921	0.817821
Н	-0.506192	0.915734	0.281183

T1: 0.021

<u>N₂H₃</u>

Ν	-0.42601000	0.00115600	0.16689800
Ν	0.78971200	-0.52568500	-0.07952700
Н	-1.18466200	-0.64524000	0.02933400
Н	-0.63000700	0.95835800	-0.08318900
Н	1.43579600	0.26241300	-0.11407100

T1: 0.025

<u>NH3N</u>

Ν	0.57094400	0.08681900	0.23479400
Ν	-0.76477000	-0.11923400	-0.32402800
Н	1.15355600	-0.75758500	0.25268100
Н	1.10749800	0.83184500	-0.22327000
Н	0.43969400	0.37381600	1.20592600

T1: 0.012

<u>TS1</u>

N	-1.67916600	0.79698300	0.31258100
Ν	-3.09387500	0.62346800	-0.19402200
Н	-1.08647400	-0.02924200	0.32317000
Н	-1.21076700	1.63678400	-0.00600500
Н	-2.54915800	1.14727500	0.93756800

imaginary frequency: 1847.05i, cm⁻¹ T1: 0.025

TS2

Ν	-1.38277000	0.40793700	0.39052800
Ν	-2.34834600	0.59978700	-0.36233900
Н	0.34120000	-0.19564900	-0.27706100
Н	-1.09722000	1.24501300	0.92502600
Н	-2.69456300	1.57243300	-0.31578900

imaginary frequency: 600.52i, cm⁻¹ T1: 0.020

<u>TS3</u>

<u>TS3</u>			
Ν	-0.43791500	-0.22586100	-0.11221200
Ν	-1.61889500	-0.45151800	0.19390800
Н	0.12795300	-1.02752300	0.19605400
Н	0.61674800	1.31230600	0.56814000
Н	-2.17138400	0.36078300	-0.11336200

imaginary frequency: 532.85i, cm⁻¹ T1: 0.021

<u>TS4</u>

Ν	-0.60800700	0.03978500	-0.16074000
Ν	0.61952900	-0.11674200	0.07234400
Н	-0.99753300	0.92573400	-0.50236100
Н	-1.17909400	-0.77645100	-0.44304200
Н	-1.61830500	-0.04293700	1.06002000

imaginary frequency: 1055.85i, cm⁻¹ T1: 0.047

<u>TS5</u>			
N	-0.58266300	0.05787000	-0.24618300
Ν	0.60266300	-0.34927700	-0.32619100
Н	-0.84406700	1.03663300	-0.30014700
Н	-1.40009100	-0.59029700	-0.24930700
Н	-1.55925200	-0.12553900	1.14804900

imaginary frequency: 1497.90i, cm⁻¹ T1: 0.088

Fig. S1: Torsional scan of N₂H₃ at a resolution of 10o at the B2PLYP-D3/aug-cc-pVTZ level.

Fig. S2: Representation of the N₂H₃ PES along with energy values from previous studies. In **black**: CCSD(T)-F12a/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ energies from the present work. In **orange**: CCSD(T)/CBS//MP2/6-311++G(3df,2p) energies by Raghunath et al.¹ In **purple**: RCCSD(T)/CBS//M06-2x-D3/aug-cc-pVTZ energies by Diévart and Catoire.²

Table S2: NH₃N Thermodynamic properties – Chemkin format

NH3NH3N2G10.0003000.000465.1112.11875669E+001.19021497E-02-6.11171276E-061.57914494E-09-1.62692823E-1325.57732688E+041.32966156E+014.05421786E+00-4.74258286E-034.75667970E-053-7.53589731E-084.11909655E-115.55932234E+045.44064039E+004

Table S3: NH₃N Thermodynamic properties – Cantera format

Table S4: Computed rate coefficient – Chemkin format

NH3N(+M)<=>N2H3(+M) TCHEB/ 300.000 PCHEB/ 0.010	3000.000 / 98.692 /	1	.000e+00 0.000	0.000
CHEB/ 6 4/ CHEB/ 3.164e+00 CHEB/ 2.506e+00 CHEB/ -4.339e-01 CHEB/ -4.241e-01 CHEB/ -1.475e-01 CHEB/ -4.441e-02	2.611e+00 1.029e+00 1.659e-01 -1.835e-03 -2.299e-04 -1.830e-03	-1.125e-01 4.096e-02 6.194e-03 2.004e-02 3.740e-03 -1.365e-03	-3.372e-02 1.749e-02 -3.833e-03 5.784e-03 2.314e-03 -6.690e-04	
N2H3(+M)<->N2H2+H(+M	1	1 00	00+00 0 000	0 000
TCHEB/ 300.000 PCHEB/ 0.010 CHEB/ 6 4/	, 3000.000 / 98.692 /	1.00		0.000
CHEB/ -6.79362 CHEB/ 14.8198 CHEB/ -0.591313 CHEB/ -0.304886 CHEB/ -0.133801 CHEB/ -0.0490817	0.813487 0.820276 0.239502 0.0320388 -0.0135305 -0.015718	-0.140865 0.00147819 0.0625767 0.024277 -2.01909e-06 -0.00813631	0.013360 -0.02546 -0.0016977 0.00936021 0.00536465 / 0.00114971 /	7 / / / /
N2H2+H(+M)<=>NH3N(+M)	1.00	0e+00 0.000	0.000
TCHEB/ 300.000 PCHEB/ 0.010 CHEB/ 6 4/ CHEB/ 1.67563 CHEB/ 6.80705 CHEB/ -0.0113718 CHEB/ -0.197575 CHEB/ -0.0610285 CHEB/ -0.0236698	3000.000 / 98.692 / 0.793494 1.06652 0.115021 -0.01465 -0.006385 -0.007432	-0.1 0.04 0.02634 724 0.02027 315 0.0011858 267 -0.001486	09792 -0.03 33188 0.014 06 0.001877 8 0.00686 5 0.000843304 3 -0.0004882	00104 / 7008 / 97 / 065 / /
H2NN+H(+M)<=>N2H3(+M TCHEB/ 300.000 PCHEB/ 0.010) 3000.000 / 98.692 /	1.000e+	00 0.000 0	.000
CHEB/ 0 4/ CHEB/ 5.821e+00 CHEB/ 2.382e+00 CHEB/ -2.059e-01 CHEB/ -1.624e-01 CHEB/ -5.628e-02 CHEB/ -1.345e-02	1.705e+00 3.141e-01 -2.399e-02 1.056e-02 -8.414e-03 -5.592e-03	-1.381e-01 1.258e-01 1.439e-02 -8.142e-04 -3.273e-03 -3.047e-03	-4.379e-02 3.047e-02 1.323e-02 -4.772e-05 -1.149e-03 -1.013e-03	
NNH+H2(+M)<=>N2H3(+M TCHEB/ 300.000 PCHEB/ 0.010 CHEB/ 6.4/) 3000.000 / 98.692 /	1.000	e+00 0.000	0.000
CHEB/ -2.210e+01 CHEB/ 2.426e+01 CHEB/ -2.280e-01 CHEB/ -1.161e-01 CHEB/ -3.306e-02 CHEB/ -4.288e-03	1.843e+00 1.492e-01 6.103e-03 5.985e-03 -6.587e-03 -3.689e-03	-9.439e-02 8.496e-02 8.998e-03 2.111e-03 -3.227e-03 -2.450e-03	-4.106e-02 3.371e-02 7.083e-03 4.435e-04 -1.073e-03 -1.089e-03	

NH+NH2(+M)<=>N2H3(+M) 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 CHEB/ 6 4/ CHEB/ 1.090e+01 1.961e+00 -2.649e-02 -1.389e-02 1 CHEB/ -1.325e+00 4.625e-02 3.087e-02 1.595e-02 1 CHEB/ -4.545e-01 -4.938e-03 -2.977e-03 -1.239e-03 / CHEB/ -1.818e-01 -1.975e-03 -1.405e-03 -8.063e-04 / CHEB/ -6.686e-02 -3.889e-04 -2.866e-04 -1.738e-04 1 CHEB/ -1.792e-02 -9.773e-05 -6.817e-05 -3.804e-05 1 $H2NN+H(+M) \leq NH3N(+M)$ 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 CHEB/ 6 4/ CHEB/ 7.467e+00 1.487e+00 -1.169e-01 -2.180e-02 / CHEB/ 2.226e+00 5.912e-01 7.743e-02 -3.233e-03 / CHEB/ -4.627e-02 -8.839e-02 3.780e-02 2.130e-02 / CHEB/ -1.709e-01 1.987e-03 4.007e-03 3.344e-03 / CHEB/ -5.896e-02 7.181e-03 -5.347e-03 -1.484e-03 1 CHEB/ -6.750e-03 -8.141e-03 -3.261e-03 -8.599e-04 / $NNH+H2(+M) \leq NH3N(+M)$ 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 / CHEB/ 6 4/ CHEB/ -2.080e+01 1.795e+00 -8.408e-02 -3.411e-02 / CHEB/ 2.449e+01 2.239e-01 6.259e-02 2.163e-02 1 1.153e-02 CHEB/ -1.125e-01 -4.429e-02 2.254e-02 1 -1.935e-03 6.527e-04 CHEB/ -1.414e-01 3.668e-02 / CHEB/ -1.613e-02 -1.571e-02 9.475e-06 -6.765e-04 / CHEB/ 1.945e-04 -2.247e-03 -3.329e-03 -1.060e-03 / 1.000e+00 0.000 $NH2+NH(+M) \leq NH3N(+M)$ 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 1 CHEB/ 6 4/ CHEB/ 7.426e+00 1.583e+00 -1.843e-01 -4.141e-02 1 CHEB/ -3.808e-02 4.111e-01 1.648e-01 2.562e-02 / CHEB/ -1.474e-01 2.517e-02 2.471e-02 1.332e-02 / CHEB/ -9.065e-02 -8.933e-03 -9.601e-04 2.422e-03 1 CHEB/ -2.653e-02 -1.214e-02 -5.249e-03 -6.964e-04 / CHEB/ 3.962e-05 -7.445e-03 -3.825e-03 -1.081e-03 / H2NN+H(+M) <=>N2H2+H(+M)1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 CHEB/ 6 4/ CHEB/ 7.467e+00 1.487e+00 -1.169e-01 -2.180e-02 / CHEB/ 2.226e+00 5.912e-01 7.743e-02 -3.233e-03 1 CHEB/ -4.627e-02 -8.839e-02 3.780e-02 2.130e-02 / CHEB/ -1.709e-01 / 1.987e-03 4.007e-03 3.344e-03 7.181e-03 CHEB/ -5.896e-02 -5.347e-03 -1.484e-03 1 CHEB/ -6.750e-03 -3.261e-03 -8.599e-04 -8.141e-03 1

NNH+H2(+M)<=>N2H2+H(+M) 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / 98.692 / PCHEB/ 0.010 CHEB/ 6 4/ CHEB/ 13.8669 -0.0377532 -0.025426 -0.0133332 / CHEB/ -0.177674 0.0454564 0.0303814 0.0157223 / CHEB/ -0.0291851 -0.00552477 -0.00338661 -0.00147392 / CHEB/ -0.0104781 -0.00209585 -0.00149409 -0.000860035 / CHEB/ -0.00357322 -0.000355265 -0.000264803 -0.000161025 / CHEB/ -0.000780331 -4.76315e-05 -3.3424e-05 -1.82459e-05 / $NH2+NH(+M) \leq N2H2+H(+M)$ 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 / CHEB/ 6 4/ -0.0377532 CHEB/ 13.8669 -0.025426 -0.0133332 / CHEB/ -0.177674 0.0454564 0.0303814 0.0157223 / CHEB/ -0.0291851 -0.00552477 -0.00147392 / -0.00338661 CHEB/ -0.0104781 -0.00209585 -0.00149409 -0.000860035 / CHEB/ -0.00357322 -0.000355265 -0.000264803 -0.000161025 / CHEB/ -0.000780331 -4.76315e-05 -3.3424e-05 -1.82459e-05 / NNH+H2(+M) <=>H2NN+H(+M)1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / 98.692 / PCHEB/ 0.010 CHEB/ 6 4/ CHEB/ -1.947e+01 -9.609e-02 -6.061e-02 -2.818e-02 / CHEB/ 2.586e+01 9.336e-02 5.761e-02 2.559e-02 / CHEB/ 2.971e-01 9.757e-03 7.330e-03 4.474e-03 1 -5.604e-04 / CHEB/ 1.007e-01 -2.454e-03 -1.454e-03 CHEB/ 3.661e-02 -5.101e-03 -3.167e-03 -1.426e-03 / CHEB/ 1.424e-02 -2.476e-03 -1.622e-03 -8.077e-04 / $NH2+NH(+M) \leq H2NN+H(+M)$ 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / PCHEB/ 0.010 98.692 / CHEB/ 6 4/ CHEB/ 8.088e+00 -1.695e-01 -9.938e-02 -4.034e-02 / 3.945e-02 / CHEB/ 2.014e+00 1.866e-01 1.054e-01 CHEB/ 3.156e-01 -6.226e-03 1.036e-03 4.135e-03 / CHEB/ 9.155e-02 -5.777e-03 -3.929e-03 -1.781e-03 / CHEB/ 2.888e-02 -6.283e-03 -3.772e-03 -1.634e-03 / CHEB/ 8.379e-03 -2.481e-03 -1.645e-03 -8.323e-04 / $NH2+NH(+M) \leq NNH+H2(+M)$ 1.000e+00 0.000 0.000 TCHEB/ 300.000 3000.000 / 98.692 / PCHEB/ 0.010 CHEB/ 6 4/ CHEB/ 7.385e+00 -1.138e-01 -7.213e-02 -3.391e-02 / CHEB/ 2.581e+00 1.180e-01 7.341e-02 3.327e-02 1 CHEB/ 2.769e-01 3.086e-03 3.916e-03 3.908e-03 / CHEB/ 9.439e-02 -3.700e-03 -2.418e-03 -1.158e-03 / CHEB/ 3.067e-02 -5.338e-03 -3.313e-03 -1.496e-03 1 CHEB/ 8.623e-03 -2.205e-03 -1.464e-03 -7.461e-04 /

Table S5: Computed rate coefficient – Cantera format

```
- equation: NH3N <=> N2H3
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [3.16388, 2.61065, -0.112489, -0.0337218]
  - [2.50571, 1.02858, 0.0409628, 0.0174905]
  - [-0.433864, 0.165908, 0.00619432, -0.00383321]
  - [-0.42413, -0.00183502, 0.020043, 0.00578384]
- [-0.147488, -0.000229917, 0.00373979, 0.00231388]
  - [-0.0444144, -0.00183023, -0.0013652, -0.000668957]
- equation: N2H3 <=> N2H2 + H
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [-6.79362,0.813487,-0.140865,0.0133607]
  - [14.8198, 0.820276, 0.00147819, -0.02546]
  - [-0.591313,0.239502,0.0625767,-0.0016977]
  - [-0.304886,0.0320388,0.024277,0.00936021]
  - [-0.133801, -0.0135305, -2.01909e-06, 0.00536465]
  - [-0.0490817,-0.015718,-0.00813631,0.00114971]
- equation: N2H2 + H <=> NH3N
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [1.67563,0.793494,-0.109792,-0.0300104]
  - [6.80705,1.06652,0.0433188,0.0147008]
  - [-0.0113718,0.115021,0.0263406,0.00187797]
  - [-0.197575,-0.0146724,0.020278,0.00686065]
  - [-0.0610285, -0.00638315, 0.00118585, 0.000843304]
  - [-0.0236698, -0.00743267, -0.0014863, -0.0004882]
- equation: H2NN + H <=> N2H3
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [5.82128, 1.70499, -0.138129, -0.0437853]
  - [2.38238, 0.314136, 0.12583, 0.0304666]
  - [-0.205892, -0.0239878, 0.0143943, 0.0132256]
  - [-0.162448, 0.0105579, -0.00081423, -4.77164e-05]
  - [-0.0562824, -0.00841372, -0.00327293, -0.00114856]
  - [-0.0134511, -0.00559213, -0.00304685, -0.00101281]
```

- equation: NNH + H2 <=> N2H3 type: Chebyshev temperature-range: [300.0, 3000.0] pressure-range: [0.01 atm, 98.692 atm] data: - [-22.0959, 1.84287, -0.0943889, -0.0410579] - [24.257, 0.149232, 0.084957, 0.0337131] - [-0.22798, 0.00610311, 0.0089977, 0.00708328] - [-0.116055, 0.00598474, 0.00211131, 0.000443531] - [-0.0330573, -0.0065871, -0.00322671, -0.00107268] - [-0.00428807, -0.00368917, -0.00245024, -0.00108896] - equation: NH2 + NH <=> N2H3 type: Chebyshev temperature-range: [300.0, 3000.0] pressure-range: [0.01 atm, 98.692 atm] data: - [10.8963, 1.96064, -0.0264904, -0.0138879] - [-1.325, 0.046248, 0.0308719, 0.0159473] - [-0.45446, -0.00493753, -0.00297691, -0.00123863] - [-0.181784, -0.00197523, -0.00140519, -0.000806267] - [-0.0668559, -0.000388914, -0.000286631, -0.000173789] - [-0.0179225, -9.77336e-05, -6.81701e-05, -3.80433e-05] - equation: H2NN + H <=> NH3N type: Chebyshev temperature-range: [300.0, 3000.0] pressure-range: [0.01 atm, 98.692 atm] data: - [7.46678, 1.48735, -0.116947, -0.021797] - [2.22624, 0.591241, 0.0774315, -0.00323253] - [-0.0462719, -0.0883901, 0.0377971, 0.0212973] - [-0.17091, 0.00198697, 0.00400741, 0.00334449] - [-0.0589584, 0.00718057, -0.00534685, -0.00148418] - [-0.00675005, -0.00814075, -0.00326095, -0.000859941] - equation: NNH + H2 <=> NH3N type: Chebyshev temperature-range: [300.0, 3000.0] pressure-range: [0.01 atm, 98.692 atm] data: - [-20.8027, 1.7952, -0.0840762, -0.03411] - [24.4864, 0.223914, 0.0625927, 0.0216257] - [-0.11247, -0.0442865, 0.0225439, 0.0115299] - [-0.141364, 0.0366818, -0.0019349, 0.000652662] - [-0.0161265, -0.0157076, 9.47483e-06, -0.000676522] - [0.000194453, -0.0022468, -0.00332929, -0.00105985]

```
- equation: NH2 + NH <=> NH3N
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
  pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [7.42567, 1.58331, -0.184293, -0.0414146]
  - [-0.0380814, 0.41113, 0.164849, 0.0256187]
  - [-0.147375, 0.025174, 0.0247136, 0.0133207]
  - [-0.090654, -0.00893325, -0.000960061, 0.00242247]
  - [-0.0265349, -0.0121359, -0.00524925, -0.000696434]
  - [3.96188e-05, -0.00744489, -0.00382456, -0.0010807]
- equation: H2NN + H <=> N2H2 + H
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
  pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [8.96391, -0.256048, -0.127045, -0.0423262]
  - [3.58104,0.282612,0.124911,0.0344487]
  - [0.208066, -0.0215834, 0.00929785, 0.0109161]
  - [0.0132221,0.00470197,-0.00265771,-0.0013656]
  - [0.00850942,-0.00962534,-0.00420432,-0.00163438]
  - [0.00401625, -0.00484242, -0.00302727, -0.00112655]
- equation: NNH + H2 <=> N2H2 + H
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
  pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [-18.8485, -0.141515, -0.0866854, -0.0384681]
  - [25.4015,0.140872,0.0829846,0.0345801]
  - [0.186062, 0.00580615, 0.00740807, 0.00573263]
  - [0.0575937,0.00161044,0.000124488,-0.000371364]
  - [0.0294662, -0.00696965, -0.0038192, -0.00148802]
  - [0.0124894,-0.00349695,-0.00235714,-0.00107936]
- equation: NH2 + NH <=> N2H2 + H
  type: Chebyshev
  temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
  - [13.8669, -0.0377532, -0.025426, -0.0133332]
  - [-0.177674,0.0454564,0.0303814,0.0157223]
  - [-0.0291851,-0.00552477,-0.00338661,-0.00147392]
  - [-0.0104781,-0.00209585,-0.00149409,-0.000860035]
  - [-0.00357322,-0.000355265,-0.000264803,-0.000161025]
  - [-0.000780331,-4.76315e-05,-3.3424e-05,-1.82459e-05]
```

```
- equation: NNH + H2 <=> H2NN + H
 type: Chebyshev
 temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
 - [-19.4654, -0.0960863, -0.060614, -0.0281763]
 - [25.8604, 0.0933606, 0.057613, 0.0255876]
  - [0.297073, 0.00975681, 0.00732958, 0.00447352]
  - [0.100684, -0.00245421, -0.00145365, -0.000560436]
 - [0.0366116, -0.00510073, -0.003167, -0.00142605]
 - [0.0142376, -0.00247607, -0.0016218, -0.000807675]
- equation: NH2 + NH <=> H2NN + H
 type: Chebyshev
 temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
 - [8.08802, -0.169537, -0.0993812, -0.0403407]
  - [2.01388, 0.186616, 0.105424, 0.0394484]
  - [0.315592, -0.00622597, 0.00103591, 0.00413535]
 - [0.0915501, -0.0057768, -0.00392886, -0.0017811]
  - [0.0288829, -0.0062832, -0.00377236, -0.00163368]
  - [0.00837929, -0.00248084, -0.00164509, -0.000832312]
- equation: NH2 + NH <=> NNH + H2
 type: Chebyshev
 temperature-range: [300.0, 3000.0]
 pressure-range: [0.01 atm, 98.692 atm]
 data:
 - [7.38528, -0.113782, -0.072126, -0.0339128]
  - [2.58064, 0.117989, 0.0734149, 0.0332713]
 - [0.276905, 0.00391617, 0.00390784, 0.00308579]
 - [0.0943856, -0.00369953, -0.00241765, -0.00115756]
  - [0.0306732, -0.00533849, -0.00331256, -0.0014962]
  - [0.00862349, -0.00220524, -0.0014645, -0.000746124]
```

Geometry comparisons:

Fig. S3: 3D representation of N_2H_3 , the geometry is identical to that shown in Fig. 3A, atom indices were added to give context to the parameters in Table S6.

Table S6: Comparison of internal coordinates for the N2H3 geometry at two levels of theory, distances (r)
are in Å, angles (a) and dihedral angles (d) are in degrees.

Description	Value CCSD	Value B2PLYP-D3
rNN	1.354	1.348
rNH3	1.015	1.006
rNH4	1.019	1.10
rNH5	1.031	1.020
aNNH3	112.532	113.832
aNNH4	118.904	120.487
aNNH5	105.272	105.999
aH3N1H5	113.715	115.002
dH5NNH3	165.572	167.485
dH5NNH4	29.982	24.687

RMSD between the two methods in Table S6: 0.013.

Fig. S4: 3D representation of NH₃N, the geometry is identical to that shown in Fig. 3B, atom indices were added to give context to the parameters in Table S7.

Table S7: Comparison of internal coordinates for the NH₃N geometry at two levels of theory, distances (r) are in Å, angles (a) and dihedral angles (d) are in degrees.

Description	Value CCSD	Value B2PLYP- D3		
rNN	1.482	1.462		
rNH3	1.031	1.026		
rNH4	1.031	1.026		
rNH5	1.028	1.021 114.612 114.162		
aNNH3	113.867			
aNNH4	113.864			
aNNH5	106.714	106.595		
aH3N1H5	106.831	106.721		
aH4N1H5	106.831	106.721		
aH4N1H3	108.262	107.693		

RMSD between the two methods in Table S7: 0.305.

Fig. S5: 3D representation of t-N₂H₂, atom indices were added to give context to the parameters in Table S8.

Table S8: Comparison of internal coordinates for the t-N2H2 geometry at two levels of theory, dis	tances
(r) are in Å, angles (a) and dihedral angles (d) are in degrees.	

Description	Value experimental ³	Value B2PL YP-D3	
rNN	1 252	1 243	
11111	1.232	1.243	
rNH	1.028	1.030	
aHNN	106.850	106.685	
dHNNH	180.000	180.000	

RMSD between the two methods in Table S8: 0.305.

Fig. S6: 3D representation of NH₂, atom indices were added to give context to the parameters in Table S9.

Table S9: Comparison of internal coordinates for the NH₂ geometry at two levels of theory, distances (r) <u>are in Å</u>, <u>angles (a) and dihedral angles (d) are in degrees</u>.

Description	Value	Value	
Description	experimental ³	B2PLYP-D3	
rNH	1.024	1.0243	
aHNH	103.400	103.334	

RMSD between the two methods in Table S9: 0.066.

Fig. S7: 3D representation of NH₂, atom indices were added to give context to the parameters in Table S10.

Table S10: Comparison of internal coordinates for the NH₂ geometry at two levels of theory, distances (r) are in Å, angles (a) and dihedral angles (d) are in degrees.

Description	Value	Value	
Description	experimental ³	B2PLYP-D3	
rNH	1.036	1.036	

RMSD between the two methods in Table S10: 0.000.

Fig. S8: Nudged Elastic Band (NEB) results executed in Orca of $N_2H_3 \ll H_2NN(S) + H$ reaction coordinate at the NEVPT2 (3,3) level of theory, energy units are Hartree

Fig. S9: A reaction coordinate scan of N–H distance for $H_2NN(S)$ and H radical performed at MRCI/cc-pVTZ level of theory using Molpro.

Estimated reaction rate uncertainty based on computed energies:

Fig. S10: The rate coefficient uncertainty vs. inverse temperature introduced to the high-pressure limit of computed reactions. The uncertainty was computed as $e^{2\sigma/RT}$ where $\sigma = \pm 2.3_{kJ/mol}$ is the standard deviation of E0 of all computed species on the N₂H₃ PES vs. the respective H0 from ATcT.

Table S11: Comparison of computed B2PLYP-D3/aug-cc-pVTZ frequencies (scaled by a factor of 0.995) vs. experimental values taken from CCCBDB.³

		Vibrational frequencies, cm ⁻¹					
Trans- N2H2	Exp. freq.	1289	1316	1529	1583	3058	3120
	Scaled DFT freq.	1335	1347	1559	1617	3259	3293
	Deviation	3.6%	2.3%	1.9%	2.2%	6.6%	5.5%
H2NN(S)	Exp. freq.	1003	1288	1574	1645	2805	2862
	Scaled DFT freq.	1007	1324	1593	1726	3062	3069
	Deviation	0.4%	2.8%	1.2%	4.9%	9.2%	7.2%
NH2	Exp. freq.	1479	3219	3301			
	Scaled DFT freq.	1533	3375	3470			
	Deviation	3.7%	4.9%	5.1%			
	Exp. freq.	3283					
NH	Scaled DFT freq.	3296					
	Deviation	0.4%					

References:

[1] Putikam Raghunath and N.T. Nghia and Ming-Chang Lin, Advances in Quantum Chemistry 2014, 69, 253-301. Doi: 10.1016/B978-0-12-800345-9.00007-6

[2] Diévart, Pascal and Catoire, Laurent, The Journal of Physical Chemistry A 2020, 124(30), 6214-6236. DOI: 10.1021/acs.jpca.0c03144

[3] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 22, May 2022, Editor: Russell D. Johnson III http://cccbdb.nist.gov/