Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplementary Information

Photoinduced formation of a platina-α-lactone – a carbon dioxide complex of platinum. Insights from femtosecond mid-infrared spectroscopy.

Markus Bauer[‡], Raphaela Post[‡], Luis I. Domenianni, and Peter Vöhringer^{*a}

Content:

TDDFT – natural transition orbitals of [Pt(chda)(C₂O₄)] Infrared spectrum of carbon dioxide in DMSO Fitting the pump-probe kinetics traces Kinetic growth of the carbon dioxide absorption **DFT-energetics** DFT - natural bond orbitals of [Pt(chda)(CO₂)] DFT – NBO analysis for [Pt(chda)(CO₂)] CASSCF - Active space for [Pt(en)(CO₂)] CASSCF - natural bond orbitals of [Pt(en)(CO₂)] CASSCF - NBO analysis for [Pt(en)(CO₂)] Optimized geometries of $[Pt(chda)(C_2O_4)]$ – singlet ground state from spin-restricted DFT Optimized geometries of [Pt(chda)(C₂O₄)] – triplet states from spin-unrestricted DFT Optimized geometry of [Pt(chda)(C₂O₄)] – open-shell singlet state from spin-unrestricted DFT Optimized geometries of [Pt(chda)(C₂O₄)] – excited singlet state from TD-DFT Optimized geometries of [Pt(chda)(C₂O₄)] – triplet states from TD-DFT with closed-shell reference Optimized geometries of [Pt(chda)(CO₂)] - singlet/triplet states from restricted/unrestricted DFT Optimized geometry of [Pt(chda)(CO₂)] - triplet states from TD-DFT with closed-shell reference References

Figure S1. Natural transition orbitals, excitation wavelengths, and oscillator strengths of the twenty lowest singlet and triplet excitations at the relaxed geometry of the singlet ground state of oxaliplatin, **[1**]. Level of theory: B3LYP/GenECP

Infrared spectrum of carbon dioxide in DMSO

To estimate the extinction coefficient of CO₂ in liquid DMSO solution, a volume of 10 mL of the pure solvent was filled into a round-bottom flask, which was closed with a rubber septum. The septum itself was pierced with two capillaries serving as gas inlet and outlet. The inlet capillary was connected to a frit, which in turn was immersed in the liquid. Gaseous CO₂ (purity 99.998% Air Liquide) was allowed to bubble through the solvent for about 20 minutes at a flow rate of 1 L/min while maintaining the total gas pressure above the liquid at 1 atm. According to Yin et al.¹ the Henry constant of CO₂ in DMSO amounts to 652 Pa m³ mol⁻¹. Accordingly, the saturation concentration of CO₂ in the solution was 0.153 mol L⁻¹. The solution was transferred into an IR-transmission cell with an optical thickness of 50 µm and its infrared spectrum was measure with an 5700 FT-IR spectrometer (Thermo Electron Corp.) at a wavenumber resolution of 0.5 cm⁻¹. As can be seen in Figure S3, a peak absorbance of this solution at 2337 cm⁻¹ was 0.78. Given the above concentration, we can use Lambert-Beer's law to derive a peak molar decadic extinction coefficient of $\varepsilon(CO_2) = 1017 \text{ Lmol}^{-1} \text{ cm}^{-1}$.

The peak extinction coefficient of oxaliplatin at 1702 cm⁻¹ is equal to $\varepsilon([\mathbf{1}]) = 2424 \text{ L mol}^{-1} \text{ cm}^{-1}$. The 1702 cm⁻¹-bleaching amplitude after 200 ps, denoted here $\Delta OD_{\infty}([\mathbf{1}])$, corresponds to the absorption of all oxaliplatin complexes that have not returned to their ground state during this time window. If each of these molecules has been photochemically transformed into the product complex [2] by loosing a neutral CO₂-molecule, the ratio of the asymptotic CO₂-absorption at 2337 cm⁻¹, $\Delta OD_{\infty}(CO_2)$, to the parent bleaching magnitude at 1702 cm⁻¹, $|\Delta OD_{\infty}([\mathbf{1}])|$, is equal to the ratio of the peak extinction coefficients, i.e. $\varepsilon(CO_2) / \varepsilon([\mathbf{1}]) = 1017 / 2424 = 0.42$. This value is in excellent agreement with the absorption-to-bleach ratio of 0.278 / 0.722 = 0.39 that can be derived directly from the pump-probe data. The primary quantum yield for CO₂-formation can be calculated from the 1702 cm⁻¹-bleaching amplitude, $\Delta OD_0([\mathbf{1}])$, at the earliest delays (i.e. at 500 fs, the signal amplitude is 3.764). We then have $\Phi(CO_2) = 0.278 \cdot 2424 / (3.764 \cdot 1017) = 18\%$, in excellent agreement with a primary quantum yield for photoconversion of 15 % derived from the ratio, $\Delta OD_0([\mathbf{1}]) / \Delta OD_{\infty}([\mathbf{1}])$ (cf. main paper).

Fitting the pump-probe kinetics traces

$\tilde{v}_{probe}/cm^{-1}$	A ₀	A ₁	τ_1/ps	A ₂	τ_2/ps	A ₃	$ au_3/ps$	A ₄	$ au_4/ps$
2337	0.250	-0.250	60						
1717	0.105	0.040	100	-1.05	5.1			0.5	0.65
1702	-0.570	-0.400	50	-3.80	4.7	1.1	0.9		
1693	-0.045			1.48	5.6	-3.0	1.5	1.25	0.4
1678	-0.240	-0.180	50	-1.00	6.5	0.45	1.3		
1656	-0.045			1.15	5.0	-0.8	1.2		
1634	0.030					1.37	2.4	-0.6	0.6

Table S1. Optimized parameters of the nonlinear least-squares fits of the 266 nm-pump / IR-probe kinetic traces displayed in Figure 4 (main paper)

Kinetic growth of the carbon dioxide absorption

Figure S3. a) Comparison of the kinetic build-up of the v_3 -absorption of carbon dioxide generated from oxaliplatin (blue circles, this work) and from $[Fe(cyclam)(ox)]^+$ (gray circles, from Ref.²) Both data sets were recorded in DMSO solution. Within the signal-to-noise ratio, both kinetics are identical. The solid curve is the monoexponential fit with a rise time of 60 ps. b) Decay of the n = 1 \rightarrow 2 absorption of the anti-symmetric stretching vibration of CO₂ dissolved in DMSO obtained from a pure IR-pump/IR-probe experiment. The solid curve is a monoexponential fit (including convolution with the instrument response function) with a decay time of 22.5 ps.

DFT-energetics

Figure S4. Relative energies of the parent's excited states and the final product states. Singlet states are colored in blue, triplet states are colored in red. The gray dashed lines connect complementary singlet-triplet electronic configurations of the parent. Note, that the energy of the singlet metal-centered state with seesaw structure was obtained from a broken-symmetry calculation whereas those of the metal-centered singlet states with square-planar and T-shaped coordination were obtained from a TDDFT-calculation. The broken-symmetry solution is of course spin-contaminated with an (S^2) -value of 0.7983. We refrained here from carrying out the simple spin-projection correction according to Yamaguchi.³

Figure S5. Natural bond orbitals, occupancies, and compositions for the product complex, (carbon dioxide)[(1R,2R)-cyclohexanediamine]platinum in its singlet ground state, 1 [**2**]_{trig.} – η^{2} (C,O). Level of theory: B3LYP/GenECP

NBO-analysis of [Pt(chda)(CO₂)] – singlet ground state from spin-restricted DFT

Natur l _{ang}	al atomic AO-type	orbi	tal oc Occupa	ccupa: ancy	ncies a energ	at Pt JY						
s Py Pz dxy dyz dz2 dx2-y2 s pz py py px accum	Cor(5s Cor(5p Cor(5p Cor(5p Val(5c Val(5c Val(5c Val(5c Val(6s Val(6p Val(6p Val(6p	5) 5) 5) 1) 1) 1) 1) 1) 1) 2) 5) 5) 5) 5) 5) 5) 5]	1.996 1.998 1.993 1.998 1.859 1.960 1.913 1.855 1.855 0.700 0.012 0.012 0.046 0.095 0.012	69 33 62 40 98 5 19 49 86 31 31 32 76	-3.8 ⁴ -2.11 -2.11 -0.22 -0.22 -0.22 -0.22 -0.22 0.00 0.08 0.33 0.40	4727 4044 3106 2371 5020 4363 4272 3021 2390 7423 3174 1406 0774		Sum over Effectiv Total nu with [co Natural Pt ^{+0.27} [c Idealize Pt⁰ [core	NOA occu e [core] mber of e re] = [K: electron ore] ⁶⁰ 5s d natura: e] ⁶⁰ 5s ² 5	upancies electron r] 4d ¹⁰ 4 configu ^{2.00} 5p ^{5.95} l electro p ⁶ 5d⁹ 6	: 17.7 ns: 60 s : 77.7 f ¹⁴ ration: ⁹ 5d ^{8.87} 6s on config (sp) ¹	2641 2641 .0.70 6p ^{0.15} guration:
1.	(1.79248) (12.14%) (87.86%)	BD(1 0.1 0.1	1) Pt 3484 ' 9373 '	(1) * Pt(* O(1	- 0(2) 1) s(2) s(6.33%) 5.27%)	p 8.43(p17.95(53.43%) 94.61%)	d 6.12(d 0.02(38.74%) 0.12%)	f 0.23(f 0.00(1.49%) 0.00%)
2.	(1.83010) (44.06%) (55.94%)	BD(0.0 0.7	1) Pt 6638 ' 7479 '	(1) * Pt(* C(1	- C(3) 1) s(3) s(44.53%) 31.30%)	p 0.23(p 2.19(10.12%) 68.60%)	d 1.02(d 0.00(45.25%) 0.07%)	f 0.00(f 0.00(0.09%) 0.03%)
4.	(1.99273) (66.38%) (33.62%)	BD(1 0.8 0.9	1) O(8148 [,] 5798 [,]	2) * O(1 * C(1	- C(3) 2) s(3) s(29.91%) 31.31%)	p 2.34(p 2.19(69.92%) 68.53%)	d 0.01(d 0.01(0.16%) 0.16%)	f 0.00(f 0.00(0.00%) 0.01%)
5.	(1.99859) (24.64%) (75.36%)	BD(0.4 0.8	1) C(4964 [,] 8681 [,]	3) * C(1 * O(1	- 0(4) 3) s(4) s() 0.00%) 0.00%)	p 1.00(p 1.00(99.84%) 99.66%)	d 0.00(d 0.00(0.15%) 0.32%)	f 0.00(f 0.00(0.00%) 0.02%)
6.	(1.99521) (35.23%) (64.77%)	BD(2 0.5 0.5	2) C(5936 [,] 8048 [,]	3) * C(4 * O(4	- 0(4) 3) s(4) s(37.97%) 39.36%)	p 1.63(p 1.53(61.95%) 60.06%)	d 0.00(d 0.01(0.06%) 0.57%)	f 0.00(f 0.00(0.02%) 0.01%)
29. 30. 31. 32. 33. 34. 33. 34.	(1.99008) (1.98567) (1.97599) (1.92327) (0.07733) (0.01050) (0.07733) (0.01050)	LP (LP (LP (LP*(LP*(LP*(LP*(LP*(Pt 	t (1) t (1)	s (s (s (s (s (s (s (s (2.46%) 4.27%) 6.55%) 0.00%) 3.17%) 0.00%) 3.17%) 0.00%)	p 0.01(p 0.00(p 0.05(p 0.00(p29.57(p 1.00(p29.57(p 1.00(0.03%) 0.02%) 0.31%) 0.01%) 93.74%) 95.07%) 93.74%) 95.07%)	d39.59(d22.40(d14.23(d 1.00(d 0.84(d 0.01(d 0.84(d 0.01(97.51%) 95.71%) 93.14%) 99.99%) 2.67%) 0.96%) 2.67%) 0.96%)	f 0.00(f 0.00(f 0.00(f 0.13(f 0.13(f 0.04(0.00%) 0.00%) 0.00%) 0.42%) 3.97%) 0.42%) 3.97%)
35. 36. 37. 38.	(1.96571) (1.73737) (1.97160) (1.82162)	LP (LP (LP (LP (1) 0 2) 0 1) 0 2) 0	(2) (2) (4) (4)	s (s (s (s (64.80%) 0.00%) 60.06%) 0.46%)	p 0.54(p 1.00(p 0.66(p99.99(35.19%) 99.84%) 39.87%) 99.27%)	d 0.00(d 0.00(d 0.00(d 0.56(0.02%) 0.15%) 0.07%) 0.26%)	f 0.00(f 0.00(f 0.00(f 0.04(0.00%) 0.01%) 0.00%) 0.02%)
247. 248.	(0.24356) (87.86%) (12.14%) (0.26839)	BD*(0.1 -0.3 BD*(1) Pt 9373 ' 3484 ' 1) Pt	t(1) * Pt(* O(1) t(1)	- 0(2 1) s(2) s(- C(2	2) 6.33%) 5.27%) 3)	p 8.43(p17.95(53.43%) 94.61%)	d 6.12(d 0.02(38.74%) 0.12%)	f 0.23(f 0.00(1.49%) 0.00%)
250.	(55.94%) (44.06%) (0.08519)	-0. BD*(6638 [,] 1) 0	* C() (2)	1) S(3) S(- C(3	44.53%) 31.30%) 3)	p 0.23(p 2.19(10.12%) 68.60%)	d 1.02(d 0.00(45.25%) 0.07%)	f 0.00(0.03%)
251.	(33.62%) (66.38%) (0.31439)	0.5 -0.5 BD*(5798 ; 8148 ; 1) C	* O() * C() (3)	2) s(3) s(- 0(4	29.91%) 31.31%) 4)	p 2.34(p 2.19(69.92%) 68.53%)	d 0.01(d 0.01(0.16%) 0.16%)	f 0.00(f 0.00(0.00%) 0.01%)
252.	<pre>(75.36%) (24.64%) (0.03723) (64.77%) (35.23%)</pre>	0.8 -0.4 BD*(0.8 -0.5	8681 ' 4964 ' 2) C 8048 ' 5936 '	* C(* O((3) * C(* O(3) s(4) s(- O(3) s(4) s(0.00%) 0.00%) 4) 37.97%) 39.36%)	p 1.00(p 1.00(p 1.63(p 1.53(99.84%) 99.66%) 61.95%) 60.06%)	d 0.00(d 0.00(d 0.00(d 0.01(0.15%) 0.32%) 0.06%) 0.57%)	f 0.00(f 0.00(f 0.00(f 0.00(0.00%) 0.02%) 0.02%) 0.01%)

Figure S6. CASSCF(18,12)-active space for the product complex mode, (carbon dioxide)(ethanediamine)platinum in its singlet ground state, 1 [2]_{trig.} – η^{2} (C,O).

Figure S7. Natural bond orbitals, occupancies, and compositions for the product complex, (carbon dioxide)(ethylene diamine)platinum in its singlet ground state, 1 [**2**]_{trig.} – η^{2} (C,O). Level of theory: CASSCF(18,12)/GenECP

NBO-analysis of [Pt(en)(CO₂)] – singlet ground state from CAS(18,12)

Natur l _{ang}	al atomic AO-type	orbita Od	al occ ccupar	upanc ncy	ies ener	at gy	Pt												
s py pz px dyz dyz	Cor(Cor(Cor(Cor(Val(Val(5s) 5p) 5p) 5d) 5d)	1. 1. 1. 1. 1.	99996 99986 99984 99964 96162 95320						Sur Ef: Tot wit	n ove fecti tal n th [c	r N ve umb ore	10A [co er e] =	occ pre] of = [K	upa ele eleo r] ·	ncie ectro ctro: 4d ¹⁰	s ons 4f	: 17.6 s: 60 : 77.6	03 03
dz2 dxy dx2v2	Val(Val(Val(Val(5d) 5d) 5d)	1. 1. 1. 1	86990 84046 33534						Na† Pt†	tural ^{0.40} [el cor	.ect ce] ^e	ron ⁵⁰ 5s	CO1 2.00	nfig 5p ^{6.}	ura 00	ation: 5d ^{8.96} 6s	^{0.63} 6p ^{0.01}
s px dxy pz py accum	Val (Ryd (Ryd (Ryd (Ryd (Ryd (6s) 6p) 6d) 6p) 6p) erg	0. 0. 0. 0. 0.	63096 00590 00222 00220 00190 01276						Ide Pt ⁰	ealiz ' [co ı	ed re] '	nat 60 5	tura is²5	lei p ⁶	lect: 5 d[®] (ron 5 s 1	n confi <u>c</u>	guration:
22.	(1.88206) (19.57%) (80.43%)	BD(1) 0.44 0.89	Pt(1 124 * 968 *) - 0 Pt(1) 0(2)	(2) s(s(33. 4.	22%) 28%)	p p	0.01 22.28	() (9!).32% 5.33%) d) d	12. 10.	.00(.09(66 0	.33% .39%) 1) 1	E 0.00(E 0.00(0.13%) 0.00%)
23.	(1.81348) (48.01%) (51.99%)	BD(1) 0.69 0.72	Pt(1 29 * 210 *) – C Pt(1) C(3)	(3) s(s(53. 28.	43%) 68%)	p p	0.01 2.48	() (7)).47%).98%) d) d	10. 10.	.86(.01(46 0	.04% .30%) 1	E 0.00(E 0.00(0.06%) 0.05%)
24.	(1.98890) (67.26%) (32.74%)	BD(1) 0.82 0.57	0(2) 201 * 722 *	- C(0(2) C(3)	3) s(s(31. 33.	77%) 76%)	p p	2.13(1.96(67 66	.56%) .03%)	d d	0.0)2()1(0. 0.	66%) 17%)	f f	0.00(0.00(0.01%) 0.04%)
25.	(1.99892) (25.92%) (74.08%)	BD(1) 0.50 0.86	C(3))91 * 507 *	- 0(C(3) O(4)	4) s(s(0. 0.	00%) 00%)	p p	1.00(1.00(99 99	.71%) .57%)	d d	0.0) 0 () 0 (0.2	26%) 41%)	f f	0.00(0.00(0.03%) 0.01%)
26.	(1.99444) (35.25%) (64.75%)	BD(2) 0.59 0.80	C(3) 937 * 947 *	- 0(C(3) O(4)	4) s(s(39. 40.	15%) 21%)	p p	1.55(1.47(60 59	.69%) .03%)	d d	0.0	00(02(0.	11%) 74%)	f f	0.00(0.00(0.05%) 0.02%)
12. 13. 14. 15.	(1.99422) (1.99100) (1.98544) (1.96248)	LP(1) LP(2) LP(3) LP(4)	Pt(1 Pt(1 Pt(1 Pt(1	.) .) .)	s (s (s (s (4. 1. 6. 0.	50응) 37응) 88응) 00응)	p p p	0.00(0.03(0.00(1.00(0 0 0 0	.01%) .04%) .01%) .02%)	d2 d7 d1 d9	21.2	22 ()9 (53 (99 (95. 98. 93. 99.	49%) 59%) 11%) 98%)	f f f	0.00(0.00(0.00(0.01(0.00%) 0.00%) 0.00%) 0.00%)
16. 17. 18. 19.	(0.98806) (0.88278) (0.98789) (0.90504)	LP(1) LP(2) LP(1) LP(2)	O(2) O(2) O(4) O(4)		s (s (s (s (63. 0. 58. 0.	88%) 00%) 77%) 91%)	p p p g	0.56(1.00(0.70(99.99(36 99 41 98	.04%) .66%) .12%) .77%)	d d d	0.0) 0 () 0 () 0 (] 4 (0.	08%) 33%) 11%) 31%)	f f f	0.00(0.00(0.00(0.02(0.00%) 0.01%) 0.00%) 0.01%)
38.	(0.35966) (80.43%) (19.57%)	BD*(1 0.89 -0.44) Pt(968 * 124 *	1) - (Pt(1) O(2)	0(2) s(s(33. 4.	22응) 28응)	p p2	0.01(22.28(0 95	.32%) .33%)	d d	2.0)0()9(66. 0.	338) 398)	f f	0.00(0.00(0.13%) 0.00%)
39.	(0.26206) (51.99%) (48.01%)	BD*(1 0.72 -0.69) Pt(210 * 029 *	1) – Pt(1) C(3)	C(3) s(s(53. 28.	43%) 68%)	p p	0.01(2.48(0 70	.47%) .98%)	d d	0.0	36(01(46. 0.	04%) 30%)	f f	0.00(0.00(0.06%) 0.05%)
40.	(0.07382) (32.74%) (67.26%)	BD*(1 0.57 -0.82	1) 0(2 722 * 201 *	2) - C O(2) C(3)	(3) s(s(31. 33.	77%) 76%)	p p	2.13(1.96(67 66	.56%) .03%)	d d	0.0)2()1(0.	66%) 17%)	f f	0.00(0.00(0.01%) 0.04%)
41.	(0.25764) (74.08%) (25.92%)	BD*(1 0.86 -0.50	L) C(3 507 *)91 *	3) - 0 C(3) O(4)	(4) s(s(0. 0.	00왕) 00왕)	p p	1.00(1.00(99 99	.71%) .57%)	d d	0.0) 0 () 0 (0.2	26%) 41%)	f f	0.00(0.00(0.03%) 0.01%)
42.	(0.02992) (64.75%) (35.25%)	BD*(2 0.80 -0.59	2) C(3)47 *)37 *	3) - 0 C(3) O(4)	(4) s(s(39. 40.	15%) 21%)	qq	1.55(1.47(60 59	.69%) .03%)	d d	0.0)0()2(0.	11%) 74%)	f f	0.00(0.00(0.05%) 0.02%)

Optimized geometry of [Pt(chda)(C₂O₄)] - singlet ground state from spin-restricted DFT

[1] (S₀): E(RB3LYP) = -843.326113893 E_h

Pt	0.033685	1.449387	0.164037
0	0.388717	3.422508	-0.169734
С	1.646811	3.713917	-0.308871
0	2.069553	4.837457	-0.519692
0	2.058960	1.353827	0.027754
С	2.625908	2.502478	-0.188002
0	3.829466	2.662093	-0.293953
Ν	-2.020956	1.558772	0.328960
Ν	-0.313529	-0.560584	0.473418
Н	-2.256013	1.954883	1.238775
Н	-2.421823	2.185225	-0.365573
Н	-0.174813	-1.055772	-0.407299
Н	0.351953	-0.960260	1.131269
С	-2.612848	0.193530	0.197837
С	-1.709984	-0.771278	0.960629
С	-4.060273	0.096995	0.672615
Н	-2.560890	-0.055843	-0.873624
С	-2.196315	-2.211695	0.828397
Н	-1.707216	-0.479644	2.022812
С	-4.564473	-1.347500	0.552681
Н	-4.116567	0.425463	1.725278
Н	-4.691687	0.781405	0.084914
С	-3.652383	-2.328123	1.297813
Н	-1.541968	-2.880440	1.408951
Н	-2.120269	-2.519701	-0.229340
Н	-5.593241	-1.412879	0.938879
Н	-4.608930	-1.627355	-0.514255
Н	-4.004716	-3.361349	1.155927
Н	-3.700552	-2.123622	2.381528

[1]	(S ₀): E(RB3LYP)	= -843.29	2815899 E _h
Pt	0.048884	1.455673	0.155330
0	2.107292	1.715359	-0.050166
С	1.953975	2.970396	-0.222132
0	0.747641	3.384786	-0.191705
0	4.273369	3.388218	-0.410734
С	3.155778	3.932808	-0.450183
0	2.841930	5.121218	-0.641340
Ν	-2.003295	1.547349	0.331984
Ν	-0.317486	-0.547577	0.474597
Н	-2.223722	1.942135	1.246457
Н	-2.397262	2.183638	-0.357758
Н	-0.174044	-1.038905	-0.407990
Н	0.354780	-0.937794	1.131447
С	-2.609517	0.189993	0.197547
С	-1.711001	-0.770754	0.963809
С	-4.057674	0.101717	0.669220
Н	-2.556357	-0.059702	-0.873670
С	-2.191749	-2.212280	0.831273
Н	-1.710009	-0.478038	2.025642
С	-4.560570	-1.343911	0.549638
Н	-4.116386	0.432425	1.720859
Н	-4.686632	0.784657	0.077394
С	-3.650193	-2.325218	1.296601
Н	-1.540144	-2.879636	1.416195
Н	-2.112085	-2.521845	-0.225569
Н	-5.589686	-1.408879	0.934673
Н	-4.603922	-1.623933	-0.517224
Н	-4.003391	-3.357870	1.153551
Н	-3.700614	-2.121014	2.380177

Square-planar coordination $\kappa^2\left(O^1,O^2\right)$ planar oxalate

Square-planar coordination $\kappa^2\left(\text{O}^1,\text{O}^1'\right)$ planar oxalate

Optimized geometries of [Pt(chda)(C₂O₄)] – triplet states from spin-unrestricted DFT

Pt	0.602766	1.086005	0.838281
0	1.535381	2.951201	0.929348
С	1.666877	3.596444	-0.183565
0	2.184713	4.701273	-0.272448
0	0.625708	1.711953	-1.309073
С	1.123445	2.884730	-1.472741
0	1.199239	3.464304	-2.551895
Ν	-1.641416	1.506114	0.742754
Ν	-0.187762	-0.895200	0.846095
Н	-1.968515	1.845562	1.643237
Н	-1.807064	2.235242	0.056755
Н	-0.009315	-1.317510	-0.062783
Н	0.300617	-1.474704	1.523399
С	-2.308492	0.242573	0.363323
С	-1.649002	-0.908073	1.129177
С	-3.822100	0.263027	0.593094
Н	-2.105669	0.097175	-0.710521
С	-2.289575	-2.255097	0.795292
Н	-1.755623	-0.706959	2.207583
С	-4.459510	-1.087190	0.246881
Н	-4.014002	0.500454	1.654783
Н	-4.269977	1.073029	-0.003443
С	-3.802694	-2.226610	1.030807
Н	-1.812419	-3.045202	1.396394
Н	-2.084775	-2.489230	-0.264864
Н	-5.540868	-1.051347	0.451571
Н	-4.348344	-1.276141	-0.835308
Н	-4.240857	-3.195756	0.745860
Н	-4.001413	-2.093994	2.108787

^{3-MC} [1] seesaw: E(UB3LYP) = -843.252064947 E_h

^{3-MC} [1]	sqpl.: E(UB3	LYP) = -843.	.241935732 E _h
Pt	0.131338	1.518893	0.154324
0	0.652325	3.598197	-0.200199
С	1.902028	3.867472	-0.339934
0	2.344096	4.989257	-0.573746
0	2.378478	1.512971	0.028199
С	2.901564	2.660122	-0.194732
0	4.108573	2.875500	-0.299661
Ν	-2.181521	1.546464	0.333373
Ν	-0.382707	-0.629966	0.438207
Н	-2.419843	1.933933	1.242794
Н	-2.591927	2.158419	-0.363757
Н	-0.281582	-1.098443	-0.459578
Н	0.281742	-1.070782	1.066616
С	-2.696644	0.167806	0.199480
С	-1.764788	-0.793850	0.948260
С	-4.143626	0.020545	0.679754
Н	-2.644481	-0.079580	-0.874126
С	-2.258039	-2.239535	0.850723
Н	-1.739421	-0.487595	2.007302
С	-4.632430	-1.427389	0.576599
Н	-4.198901	0.354670	1.731461
Н	-4.789856	0.695176	0.096291
С	-3.703756	-2.377582	1.337149
Н	-1.585660	-2.893663	1.428105
Н	-2.191456	-2.562514	-0.203802
Н	-5.661604	-1.502089	0.961507
Н	-4.670020	-1.724508	-0.486269
Н	-4.037656	-3.420614	1.221177
Н	-3.748620	-2.149422	2.416616

Square-planar coordination $\kappa^2\left(O^1,O^2\right)$ planar oxalate

Pt	0.437691	0.977899	0.144957
0	3.237727	2.117387	-0.266293
С	2.427471	3.047366	-0.281965
0	1.142954	2.911457	-0.153328
0	3.179024	5.109670	0.599809
С	2.891857	4.505266	-0.457890
0	2.947609	4.919573	-1.637270
Ν	-1.824814	1.410956	0.342193
Ν	-0.352441	-1.001065	0.394896
Н	-1.964542	1.825809	1.260185
Н	-2.132194	2.086271	-0.349634
Н	-0.339108	-1.463352	-0.513037
Н	0.242354	-1.558163	1.002122
С	-2.540339	0.124671	0.213445
С	-1.742828	-0.972358	0.927727
С	-3.976059	0.185742	0.744240
Н	-2.559051	-0.111857	-0.863153
С	-2.435230	-2.330633	0.807209
Н	-1.654889	-0.697089	1.991290
С	-4.675773	-1.172804	0.632170
Н	-3.944759	0.500455	1.802669
Н	-4.533530	0.961009	0.195972
С	-3.872644	-2.271370	1.334147
Н	-1.850021	-3.089751	1.349739
Н	-2.441989	-2.629521	-0.256334
Н	-5.688344	-1.104200	1.059420
Н	-4.799301	-1.431673	-0.433928
Н	-4.357469	-3.250510	1.197961
Н	-3.853453	-2.076171	2.420605

 $^{3-\text{MC}}\left[1\right]_{\text{T-coord.}}$ E (UB3LYP) = -843.234200554 $E_{\rm h}$

3-MLCT [1] sqpl.:	E(UB3LYP)	= -843	.202410053	E_{h}
-------------------	-----------	--------	------------	---------------------------

Pt	0.060799	1.472145	0.174248
0	0.336357	3,329079	-0.154686
C	1.719167	3.651461	-0.326865
0	1,964534	4.865814	-0.533570
0	2.044726	1.331124	0.012938
C	2.616031	2.545845	-0.230691
0	3.857363	2.620355	-0.352493
N	-2.029399	1.576154	0.364031
N	-0.305002	-0.561968	0.505740
Н	-2.261155	1.958108	1.280254
Н	-2.435489	2.209853	-0.320680
Н	-0.153032	-1.052996	-0.376311
Н	0.360222	-0.960166	1.165695
С	-2.605636	0.206820	0.213071
С	-1.709453	-0.764749	0.978453
С	-4.059734	0.099429	0.666410
Н	-2.538904	-0.031304	-0.860195
С	-2.193924	-2.204780	0.832619
Н	-1.713326	-0.480048	2.042357
С	-4.558179	-1.344855	0.526942
Н	-4.132522	0.419376	1.720522
Н	-4.683523	0.787056	0.074618
С	-3.655761	-2.326935	1.280866
Н	-1.546153	-2.874998	1.418497
Н	-2.102658	-2.506967	-0.225535
Н	-5.592972	-1.414794	0.895550
Н	-4.584136	-1.617254	-0.542468
Н	-4.002192	-3.360490	1.128075
Н	-3.720442	-2.128420	2.364740

Spin density

Spin density

Optimized geometry of [Pt(chda)(C₂O₄)] – open-shell singlet state from spin-unrestricted DFT

1-MC [1]	seesaw:	E(UB3L	YP)	=	-84	3.2558	09591	Eh
Pt	-0.15	5887	1.	99	3556	0.	87182	27
0	1.80	3292	2.	69	7709	0.	94282	23
С	2.35	1168	3.	04	0816	-0.	18339	3
0	3.45	5317	З.	56	0832	-0.	26155	5
0	0.38	2663	2.	20	7611	-1.	31256	51
С	1.52	9649	2.	74	9822	-1.	48278	81
0	2.02	6956	З.	01	4754	-2.	57489	94
Ν	-2.23	0855	1.	69	1634	0.	81413	30
Ν	-0.32	5742	-0.	30	4557	0.	67262	25
Н	-2.57	6557	1.	88	2546	1.	75551	0
Н	-2.63	6123	2.	39	7044	0.	20583	32
Н	-0.09	9234	-0.	53	3834	-0.	29271	4
Н	0.35	2727	-0.	78	3047	1.	25780)3
С	-2.65	6560	Ο.	33	1882	0.	39063	39
С	-1.70	6178	-0.	68	6209	1.	02860)5
С	-4.11	6005	Ο.	04	2724	0.	73780)5
Н	-2.51	7697	Ο.	29	2391	-0.	70069)3
С	-2.08	6134	-2.	11	6177	0.	63789	94
Н	-1.77	6258	-0.	57	9087	2.	12317	9
С	-4.49	7435	-1.	39	1114	0.	35822	24
Н	-4.25	4655	Ο.	18	7327	1.	82477	2
Н	-4.76	8359	Ο.	77	0661	0.	23067	3
С	-3.54	9251	-2.	41	1015	0.	99777	2
Н	-1.41	0264	-2.	82	3265	1.	14339	9
Н	-1.93	4235	-2.	24	0812	-0.	44692	22
Н	-5.53	6466	-1.	59	1087	0.	66003	81
Н	-4.46	1247	-1.	49	8810	-0.	74056	50
Н	-3.81	2678	-3.	43	1447	0.	68210	9
Н	-3.66	4595	-2.	37	8771	2.	09520) 4

Twisted seesaw coordination $\kappa^2\left(\text{O}^1,\text{O}^2\right)$ planar oxalate

Spin density

Optimized geometries of [Pt(chda)(C₂O₄)] - excited singlet state from TD-DFT

^{1-MC} [1] sqpl.: E	E(TD-B3LYP)	=	-843.	219459407	E_{h}
---------------------------------------	-------------	---	-------	-----------	---------------------------

Pt	0.124144	1.515340	0.145528
0	0.630330	3.633956	-0.167837
С	1.877106	3.900126	-0.311630
0	2.332038	5.018582	-0.538157
0	2.329483	1.538150	0.036131
С	2.866760	2.682756	-0.177792
0	4.074991	2.881782	-0.279013
Ν	-2.138907	1.521740	0.309464
Ν	-0.380242	-0.667470	0.405638
Н	-2.379333	1.920036	1.213911
Н	-2.536793	2.134029	-0.395095
Н	-0.291993	-1.125884	-0.498185
Н	0.294165	-1.107475	1.023359
С	-2.678176	0.149575	0.184049
С	-1.754074	-0.817665	0.933527
С	-4.124555	0.031629	0.672019
Н	-2.634512	-0.103318	-0.888453
С	-2.269146	-2.256896	0.857940
Н	-1.714709	-0.501348	1.989255
С	-4.633035	-1.411107	0.590562
Н	-4.170705	0.380360	1.719317
Н	-4.764003	0.706782	0.081796
С	-3.713041	-2.364205	1.358173
Н	-1.602388	-2.912690	1.439805
Н	-2.215625	-2.595449	-0.192273
Н	-5.660785	-1.466056	0.982375
Н	-4.681130	-1.721645	-0.467992
Н	-4.064852	-3.403245	1.261427
Н	-3.745409	-2.118494	2.434281

the for
НОТО
LUTO

Square-planar coordination $\kappa^2\left(\text{O}^1,\text{O}^2\right)$ planar oxalate

T-coordination $\kappa^1\left(O^1\right)$ $D_{2d}\text{-}symmetrical$ (twisted) oxalate

Pt	0.385266	0.977908	0.082958
0	3.142398	2.113422	-0.295360
	2.340033	3.059001	-0.329348
0	1.062356	2.938087	-0.244647
0	3.106/31	5.099/94	0.594408
C	2.849169	4.508520	-0.4//3/1
0	2.954063	4.926510	-1.651/18
N	-1./586/3	1.385391	0.404108
N	-0.338304	-1.028/2/	0.428940
Н	-1.857731	1.758695	1.346522
Н	-2.078318	2.099464	-0.244442
H	-0.302903	-1.539411	-0.451310
H	0.269611	-1.527889	1.071628
С	-2.503590	0.117574	0.238754
С	-1.732926	-0.998522	0.949649
С	-3.946567	0.206352	0.742455
Н	-2.506903	-0.096624	-0.842329
С	-2.445913	-2.343300	0.807605
Н	-1.654717	-0.735457	2.016914
С	-4.662102	-1.141285	0.595309
Н	-3.931711	0.507134	1.804912
Н	-4.478769	0.996188	0.190225
С	-3.893604	-2.259804	1.304480
Н	-1.886020	-3.114087	1.359949
Н	-2.435435	-2.638129	-0.256892
Н	-5.684090	-1.061371	0.997054
Н	-4.761706	-1.384776	-0.476852
Н	-4.393689	-3.228348	1.149743
Н	-3.894867	-2.073293	2.392580

^{1-MC}[**1**]_{T-coord}.: E(TD-B3LYP) = -843.204697116 E_h

Optimized geometries of [Pt(chda)(C2O4)] - triplet states from TD-DFT with closed-shell reference

Pt	0.604228	1.093952	0.874181
0	1.371973	3.042652	0.924058
С	1.566224	3.617546	-0.216881
0	2.018754	4.748239	-0.340117
0	0.735690	1.603519	-1.299487
С	1.186130	2.789367	-1.497559
0	1.333109	3.302568	-2.603149
Ν	-1.636999	1.515147	0.791172
Ν	-0.173871	-0.897531	0.861283
Н	-1.955791	1.829908	1.703716
Н	-1.820046	2.260716	0.127660
Н	0.010681	-1.303201	-0.054005
Н	0.303261	-1.494233	1.531380
С	-2.300453	0.258012	0.390381
С	-1.640061	-0.910525	1.130126
С	-3.812777	0.275989	0.629473
Н	-2.103388	0.134919	-0.687280
С	-2.284469	-2.245768	0.755462
Н	-1.754071	-0.737616	2.212670
С	-4.458035	-1.060275	0.249242
Н	-3.996511	0.484245	1.698827
Н	-4.260301	1.105421	0.059864
С	-3.797774	-2.223382	0.994548
Н	-1.808650	-3.055964	1.330155
Н	-2.081658	-2.446359	-0.312036
Н	-5.537425	-1.026897	0.464866
Н	-4.357358	-1.217032	-0.839046
Н	-4.237312	-3.182911	0.680646
Н	-3.993744	-2.124433	2.076634

^{3-MC} [1] seesaw: E(TD-B3LYP) = -843.256707740 E_h

^{3-MC}[1]_{sq.-pl}.: E(TD-B3LYP) = -843.244370805 E_h Ρt 0.130845 1.517808 0.155717 0 0.651268 3.600412 -0.190342 -0.333165 С 1,900676 3.868838 0 2.343484 4.991353 -0.563485 0 2.377828 1.512075 0.024049 2.900224 2.659727 -0.196877 С 0 4.107029 2.875175 -0.306447 0.334094 Ν -2.180680 1.546781 Ν -0.382310 -0.632838 0.431873 Η -2.423338 1.932023 1.243078 -2.593162 2.158433 -0.361849 Н Н -0.286395 -1.101625 -0.466088 Η 0.282110 -1.078127 1.056930 С -2.695217 0.167734 0.197906 С -1.763269 -0.793993 0.946411 0.675893 С -4.142751 0.020503 Η -2.641595 -0.078911 -0.875848 С -2.258037 -2.239350 0.854469 Н -1.734915 -0.484847 2.004595 -4.631459 -1.427496 0.575923 С -4.1999470.357225 1.726707 Н Н -4.788018 0.693852 0.089807 С -3.703775 -2.375019 1.341080 Н -1.585889 -2.891552 1.434358 Н -2.191562 -2.566630 -0.198754 Η -5.661345 -1.501330 0.959014 Н -4.666865 -1.727997 -0.486093 -4.038171 -3.418362 1.229662 Н -3.749155 -2.141968 2.419513 Η

Twisted seesaw coordination $\kappa^2(0^1, 0^2)$ planar oxalate

square-planar coordination $\kappa^2(O^1,O^2)$ planar oxalate

^{3-MC} [1]	T-coord.: E(TD)-B3LYP) = -8	43.235290898	Eh
P+	0 435588	0 991148	0 149142	
0	3,223616	2.108867	-0.254367	
C	2.425971	3.050966	-0.277550	
0	1.140724	2.931327	-0.150478	
0	3.206303	5.107682	0.592596	
С	2.912998	4.499764	-0.461629	
0	2.977585	4.906141	-1.643552	
Ν	-1.836948	1.415254	0.345624	
Ν	-0.354553	-0.992288	0.390169	
Н	-1.981027	1.827150	1.263930	
Н	-2.148982	2.090237	-0.344068	
Н	-0.344081	-1.450591	-0.519629	
Н	0.241144	-1.553657	0.992404	
С	-2.546038	0.126227	0.213955	
С	-1.743525	-0.968319	0.926557	
С	-3.982659	0.180043	0.742991	
Н	-2.562633	-0.109311	-0.862980	
С	-2.431434	-2.329066	0.808320	
Н	-1.654212	-0.692320	1.989912	
С	-4.676508	-1.181368	0.631786	
Н	-3.953909	0.495776	1.801236	
Н	-4.543007	0.952665	0.193808	
С	-3.868749	-2.275233	1.335824	
Н	-1.842823	-3.085381	1.351160	
Н	-2.437748	-2.629181	-0.254909	
Н	-5.689844	-1.116975	1.057873	
Н	-4.797732	-1.442323	-0.434106	
Н	-4.349540	-3.256694	1.202034	
Н	-3.850070	-2.077524	2.421874	

3-MLCT []] _{sqpl.} :	E (TD-E	3LYP) =-84	3.204685377	Eh
Pt	0.0594	64	1.467	645	0.174682	
0	0.3278	57	3.324	848	-0.149066	
С	1.7056	23	3.643	845	-0.321999	
0	1.9554	55	4.854	196	-0.529590	
0	2.0431	13	1.322	732	0.014890	
С	2.6070	79	2.539	067	-0.228810	
0	3.8473	53	2.624	949	-0.354747	
Ν	-2.0250	26	1.576	5750	0.361858	
Ν	-0.3028	00 -	0.560	400	0.505266	
Н	-2.2580	98	1.960	459	1.276949	
Н	-2.4289	91	2.210	032	-0.324453	
Н	-0.1505	63 -	1.050	696	-0.377245	
Н	0.3627	53 -	0.959	399	1.164385	
С	-2.6030	76	0.207	857	0.211997	
С	-1.7074	64 -	0.763	850	0.977863	
С	-4.0570	16	0.101	954	0.665713	
Н	-2.5364	98 -	0.030	936	-0.861136	
С	-2.1922	93 -	2.203	567	0.832202	
Н	-1.7113	51 -	0.479	005	2.041697	
С	-4.5563	25 -	1.342	163	0.527259	
Н	-4.1292	84	0.422	605	1.719639	
Н	-4.6805	11	0.789	579	0.073634	
С	-3.6540	82 -	2.324	634	1.280986	
Н	-1.5447	44 -	2.874	011	1.418048	
Н	-2.1014	37 -	2.505	893	-0.225943	
Н	-5.5908	85 -	1.411	290	0.896629	
Н	-4.5832	12 -	1.614	980	-0.542011	
Н	-4.0012	89 -	3.357	964	1.128594	
Н	-3.7181	47 -	2.125	838	2.364844	

Square-planar structure $\kappa^2\left(O^1,O^2\right)$ planar oxalate

T-coordination $\kappa^1\,(O^1)$ $D_{2d}\text{-}symmetrical$ (twisted) oxalate

Optimized geometries of [Pt(chda)(CO₂)] - singlet/triplet states from restricted/unrestricted DFT

[2] (S₀): E(RB3LYP) = -654.630620198 E_h

Pt	0.075283	1.557534	-0.069986
0	1.326201	3.252238	-0.386693
С	1.916103	2.101279	-0.339327
0	3.078555	1.759025	-0.443641
N	-2.212358	1.603765	0.186017
Ν	-0.379320	-0.459076	0.194408
Н	-2.417885	2.021856	1.090152
Н	-2.670989	2.184329	-0.507755
Н	-0.342498	-0.915673	-0.715909
Н	0.344696	-0.897702	0.756536
С	-2.728344	0.219923	0.133113
С	-1.711507	-0.692813	0.817895
С	-4.118129	0.045206	0.748989
Н	-2.767869	-0.058430	-0.933385
С	-2.143348	-2.157478	0.768875
Н	-1.614418	-0.373621	1.868115
С	-4.564236	-1.421223	0.717167
Н	-4.085729	0.401415	1.794553
Н	-4.837737	0.685789	0.215050
С	-3.534011	-2.334231	1.389691
Н	-1.400102	-2.782222	1.289233
Н	-2.162978	-2.488488	-0.284956
Н	-5.545339	-1.524128	1.206850
Н	-4.700910	-1.736187	-0.332373
Н	-3.844465	-3.387904	1.312446
Н	-3.482228	-2.098577	2.467190
Н	-4.348344	-1.276141	-0.835308

 $[\mathbf{2}]$ (T₁): E(UB3LYP) = -654.575075388 E_h

Pt	0.138960	1.488187	-0.062840
0	1.585928	3.858511	-0.525790
С	1.810177	2.649332	-0.401364
0	2.834087	1.950956	-0.435741
Ν	-2.084640	1.515940	0.199011
Ν	-0.361117	-0.675641	0.223587
Н	-2.267751	1.938173	1.106303
Н	-2.512952	2.119232	-0.495455
Н	-0.333577	-1.122758	-0.689876
Н	0.347631	-1.125846	0.793586
С	-2.658630	0.150241	0.136959
С	-1.701003	-0.818441	0.835233
С	-4.065222	0.064255	0.733914
Н	-2.697003	-0.121039	-0.930927
С	-2.232928	-2.252573	0.796234
Н	-1.597040	-0.498193	1.885011
С	-4.600298	-1.371821	0.702007
Н	-4.024435	0.420252	1.779159
Н	-4.737734	0.745262	0.188948
С	-3.639086	-2.339131	1.399031
Н	-1.535093	-2.916206	1.330935
Н	-2.258210	-2.591677	-0.254854
Н	-5.594248	-1.408682	1.174818
Н	-4.737887	-1.685544	-0.347718
Н	-4.012613	-3.372626	1.327170
Н	-3.588876	-2.095558	2.474914
Н	-4.348344	-1.276141	-0.835308

Trigonal / square-planar coordination $\eta^2\left(0,C\right)$ CO_ neutral / carbonite dianion

This is clearly a carbon dioxide radical anion that is ferromagnetically coupled to a platinum(I) center!

Pt	-0.461959	2.186667	0.225388
0	1.543657	2.737648	0.056298
С	2.183224	2.421675	-0.994250
0	3.340489	2.606008	-1.307804
Ν	-2.483135	1.772310	0.481339
Ν	-0.397385	-0.095213	0.321096
Н	-2.746952	2.027435	1.432003
Н	-3.057711	2.347346	-0.129181
Н	-0.262231	-0.450921	-0.621729
Н	0.373128	-0.437939	0.884926
С	-2.802224	0.333203	0.250557
С	-1.697911	-0.528390	0.870347
С	-4.182534	-0.050176	0.784256
Н	-2.776498	0.186057	-0.841294
С	-1.983543	-2.018695	0.667030
Н	-1.666487	-0.311544	1.950974
С	-4.464385	-1.542406	0.579621
Н	-4.222914	0.188297	1.862373
Н	-4.951798	0.565143	0.290844
С	-3.364873	-2.403941	1.207350
Н	-1.192435	-2.609853	1.154905
Н	-1.932106	-2.243510	-0.413437
Н	-5.446768	-1.797563	1.006910
Н	-4.524795	-1.756140	-0.502003
Н	-3.556353	-3.471781	1.017600
Н	-3.376700	-2.270787	2.303578

This is clearly a carbon dioxide radical anion that is ferromagnetically coupled to a platinum(I) center!

Optimized geometry of [Pt(chda)(CO₂)] - triplet states from TD-DFT with closed-shell reference

[2]	(T ₀): E(TD-B3L)	YP)	=	-6	54	.572	297	724	47	8	Eh
Pt	0.117664	1	. 4	980	89	-	-0.	. 05	59	86	0
0	1.603032	3	. 8	470	72	-	-0.	.56	56	54	5
С	1.808194	2	. 63	388	32	-	-0.	. 42	20	07	0
0	2.816764	1	. 91	174	84	-	-0.	43	38	83	7
Ν	-2.084689	1	.5	175	36		0.	. 21	LЗ	35	8
Ν	-0.360202	-0	. 61	620	68		0.	.23	35	01	3
Н	-2.264640	1	. 93	328	06		1.	. 12	24	51	7
Н	-2.515676	2	.12	260	02	-	-0.	47	74	91	1
Н	-0.324283	-1	.1	114	65	-	-0.	. 67	76	90	7
Н	0.350894	-1	.1(024	83		0.	. 80)9	49	4
С	-2.659194	0	.1	522	07		0.	.14	13	35	9
С	-1.701807	-0	. 83	154	71		0.	. 84	11	72	7
С	-4.067388	0	.0	633	20		0.	.73	34	50	9
Н	-2.692967	-0	.1	146	39	-	-0.	. 92	25	68	4
С	-2.229010	-2	.2	506	83		0.	. 7 9	94	79	5
Н	-1.603071	-0	. 4	986	40		1.	. 8 9	92	97	7
С	-4.598947	-1	.3	737	82		0.	. 69	94	29	9
Н	-4.031462	0	. 4	152	46		1.	.78	31	26	6
Н	-4.738713	0	. 74	452	94		0.	.18	39	29	1
С	-3.638060	-2	.3	421	68		1.	. 39	90	80	0
Н	-1.532436	-2	. 91	146	68		1.	. 33	30	62	2
Н	-2.248688	-2	.58	861	10	-	-0.	.25	57	56	9
Н	-5.594540	-1	. 4	151	78		1.	.10	53	10	8
Н	-4.731803	-1	. 68	829	46	-	-0.	. 35	57	38	0
Н	-4.009508	-3	.3	759	05		1.	. 31	L 2	97	9
Н	-3.593024	-2	.1(030	78		2.	. 4 6	57	90	8

Trigonal-planar $\eta^1\left(C\right)$ carbon dioxide radical anion

 $[2](T_2): E(RB3LYP) = -654.551846618 E_h$ T-coordination

References

- 1 X. Yin, J. Wang and S. F. Shen, J. Chem. Eng. Data, 2024, 69, 1668-1676.
- 2 S. Straub and P. Vöhringer, *Phys. Chem. Chem. Phys.*, 2021, 23, 17826-17835.
- 3 K. Yamaguchi, F. Jensen, A. Dorigo and K. N. Houk, *Chem. Phys. Lett.*, 1988, **149**, 537-542.