Supplementary Information for

Unveiling Ultraviolet Photodissociation Dynamics of SiO from Laser-

Ablated Supersonic Beam with Time-Sliced Ion Velocity Imaging

Yujie Ma, Fangfang Li, Dong Yan, Ang Xu, Ti Zhou, Jiaxing Liu, Fengyan Wang*

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and

Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy

Materials (iChEM), Fudan University, Shanghai, 200438, China

*Corresponding Author: fengyanwang@fudan.edu.cn

Fig. S1-S4

Fig. S1 Angular distributions of Si products in SiO(X¹ Σ^+ , v = 24-31) + hv \rightarrow Si(³P) + O(³P) (N1X) channel from one-photon dissociation of SiO(X¹ Σ^+ , v) at 243.838, 250.685, 251.611, 252.911, 288.173 and 288.258 nm, respectively. Further details regarding the fit can be found in the paper.

Fig. S2 Angular distributions of Si products in SiO($b^3\Pi$, v) + $hv \rightarrow$ Si(³P) + O(³P) (N1b) channel and SiO($b^3\Pi$, v) + $hv \rightarrow$ Si(¹D) + O(³P) (N2b) channel from one-photon dissociation of SiO($b^3\Pi$, v) at 252.911, 250.685, 251.611, 243.838 nm, respectively.

Fig. S3 Angular distributions of Si products from one-photon and two-photon dissociation of SiO($a^{3}\Sigma^{+}$, $d^{3}\Delta$ or $e^{3}\Sigma^{-}$, v) at 288.173, 288.258 and 288.408 nm, respectively.

Fig. S4 Angular distributions of Si products from two-photon dissociation of SiO($C^1\Sigma^2$, $D^1\Delta$, v)., respectively.