Theoretical insight into the thermoelectric transport performance of $MoP_2Ga_2S_2$ monolayer

Xin-Yu Wang ^a,¹, Xin Yang ^a, Xiang-Hui Meng ^a, Yan-Qing Shen ^{*a, b, 1}, Yong Shuai

*c, Qing Ai*c, Zhong-Xiang Zhou a, b

^a School of Physics, Harbin Institute of Technology, Harbin 150001, People's Republic of China

^b Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China

^c School of Energy Science and Engineering, Harbin Institute of Technology, Harbin
150001, People's Republic of China

¹ These authors contributed equally to this work.

1. The AIMD stimulation for MoP₂Ga₂S₂ monolayer at 1500 K.

- Fig. S1 The ab-initio molecular dynamics (AIMD) simulation results of MoP₂Ga₂S₂ monolayer at 1500 K. The AIMD runs for 20 ps with a time step of 1 fs.
- 2. The energy band structures of monolayer MoP₂Ga₂S₂ using PBE, PBE+SOC and HSE06

Fig. S2 The energy band structure using (a) PBE and PBE+SOC, (b) HSE06 of $MoP_2Ga_2S_2$ monolayer.

3. The boundary scattering rate and isotopic scattering rate in the irreducible wedge of MoP₂Ga₂S₂ monolayer

Fig. S3 (a) The boundary scattering rate and (b) isotopic scattering rate of $MoP_2Ga_2S_2$ monolayer.