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Note S1: The details for the HSE method and the determination process of the 

mixing parameter α in the present hybrid functional calculations

For the HSE hybrid functional calculations, the exchange-correlation energy of the 

HSE function is defined by . EHSE
XC = αESR

X (μ) + (1 - α)EPBE,SR
X (μ) + EPBE,LR

X (μ) + EPBE
C

In this function, SR and LR represent the short-range and long-range interaction 

between electrons, μ is the ratio of the SR and LR parts. The μ value is set as the default 

value of 0.2 Å-1. The band gap of the semiconductor is usually sensitive to the value of 

the mixing parameter α. The fault value for the mixing parameter α in VASP code is 

0.25. However, the fault value usually cannot produce the reasonable band gaps for 

many semiconductors. Then, the mixing parameter  needs to be adjusted to achieve α

the experimental band gap value. In defect physics calculations, this is a general process 

when the HSE hybrid function is applied1-5.

The experimental bandgap value of NaBiO3 is 2.6 eV6, and we obtain the bandgap 

value by adjusting the mixing parameter α in the HSE calculations. The details are listed 

in Table. S1. In Table. S1, it is seen that when the Hartree-Fock mixing parameter α is 

set to 0.32, the calculated HSE band gap is 2.62 eV, the bandgap value is very close to 

the experimental bandgap 2.60 eV of NaBiO3
6. Therefore, 0.32 is adopted for the 

mixing parameter α in the present HSE calculations.
Table. S1. The band gap values of NaBiO3 obtained by HSE calculations for different mixing 

parameters α in unit eV.
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α 0.15 0.20 0.25 0.31 0.32 0.33 0.35

HSE band gap 1.75 2.01 2.25 2.57 2.62 2.66 2.75

Note S2: How to calculate the Ecorr in Eq. (1) from the VASP output.

The correction term Ecorr in Eq. (1) originates from the necessity to address 

electrostatic artifacts introduced in periodic boundary conditions during defect 

calculations. This term ensures that the computed defect formation energies accurately 

reflect the isolated defect behavior rather than periodic artificial interactions. In 

periodic systems, the electrostatic potential from charged defects interacts with its 

periodic images and a compensating background charge to maintain neutrality. As 

derived in the FNV method of Freysoldt et al7, the correction energy can be expressed 

as:

                          (S1)

Ecorr = Elat
q  -  q∇q

0

where  is the lattice energy component reflecting periodic electrostatics, q is the Elat
q

defect charge state, and  is the short-range potential. ∇q/0

        (S2)
Elat

q = ∫
Ω

 d3r[12[qd(r) + n][Ṽlr
q(r) - Vlr

q(r)] + nVlr
q(r)]

where  is the charge distribution of the defect, a key physical quantity that 𝑞𝑑(𝑟)

describes how the defect affects the surrounding electric field, n is to neutralize the 

background charge and is used to compensate for the non-neutral effect of the total 

charge in the periodic system to ensure the electrical neutrality of the system.  is 𝑉̃𝑙𝑟
𝑞(𝑟)

the reconciling part of the long-range potential for dealing with interactions arising 

from mirror charges in the periodic regime.  is the original long-range potential, Vlr
q(r)

which represents the long-range Coulomb potential generated directly by the defect and 

its mirror charge.

                                    (S3)
Δq/0 =

1
Ω∫

Ω

 d3rV sr
q/0(r) 

where  denotes the potential alignment correction term between the defect state 𝑞 Δ𝑞/0

and the reference state 0. This correction term is used to remove the potential reference 

deviation between systems of different charge states and to ensure that the energies of 



the different charge states are comparable.  denotes the short-range potential, V sr
q/0(r)

which specifically describes the interaction between the charge defect and the 

background charge on a local scale.

Note S3: Defect and carrier concentration calculation method

At infinite temperature, the excited electrons from the conduction band minimum 

(CBM) and excited holes from the valence band maximum (VBM) will always affect 

the position of the Fermi level. The concentrations of these thermally excited electrons 

(n0) and holes (p0) are given as shown in8

                       (S4)

n0 =
∞

∫
Eg

 fe(E)ρ(E)dE

                       (S5)
p0 =

0

∫
- ∞

 fh(E)ρ(E)dE

where is the material bandgap, is the Fermi-Dirac distribution function, 𝐸𝑔 𝑓𝑒(𝐸)

expressed as , and .  is the Boltzmann fe(E) = [exp((EF - E)/kT) + 1] - 1 fh(E) = 1 - fe(E) 𝑘

constant,  is the total density of states of the pure supercell, and T is the 𝜌(𝐸)

temperature.

Additionally, we used the SC-FERMI code to calculate the carrier concentration 

of defects in NaBiO₃ at different temperatures. The principle is to calculate the 

concentration of defect X with charge state q as:

                     (S6)
[X]q = Nxgq𝑒𝑥𝑝( -

Ef(D
q)

kBT )
where  is the defect density of the possible formation of the defect,  is the 𝑁𝑥 𝑔𝑞

degeneracy of charge state q,  is the formation energy of defect D with charge state 𝐸𝑓

q,  is the Boltzmann constant, and  is the temperature. The entire equation is 𝑘𝐵 𝑇

achieved by integrating the Fermi-Dirac function to calculate the concentration of 

electrons (n0) and holes (p0). Thus, defects with sufficiently low formation energies are 

produced only when conditions tend to equilibrate, usually occurring during high-

temperature growth or annealing9. Finally, the charge neutrality condition in 

semiconductor systems can be expressed as:



                       (S7)
n0 - ∑

X

 ∑
q

 q[Cq
X] = p0

where the equation includes the sum of donor and acceptor defects.  depends on a set 𝐶𝑞
𝑋

of defect formation energies {Ef (Xq)} that vary with temperature T. The other terms 

in the equation also depend on EF, and the equilibrium Fermi energy level positions 

(EF), carrier concentrations, and defect concentrations that satisfy Eq. S1 and S4-S6) 

can be calculated given a finite temperature T and a certain atomic chemical potential. 

Once the temperature T and chemical growth environment are determined, the Fermi 

level, carrier, and charged defect concentrations are also determined under the charge 

neutrality condition. Additionally, due to simplification, the defect formation energy EF 

(Xq) is fixed and determined at EF=0 eV, which reduces the formation energy of 

positively charged defects and increases the formation energy of negatively charged 

defects, leading to a discrepancy between the increase in positively charged defect 

concentration and the decrease in negatively charged defect concentration, but does not 

affect the concentration of neutral defects.

From the defect formation energies and total density of states obtained from 

supercell HSE calculations, we can see the self-consistent Fermi level EF (red dashed 

line) calculated using the SC-FERMI code and the equilibrium concentrations of 

carriers and charged defects in NaBiO3 under different chemical potential conditions 

(AHSE, BHSE, CHSE, DHSE, EHSE) as a function of temperature T in the range of 50 to 1000 

K, as shown in Fig. 4. For simplicity, it is assumed that the defect formation energy, 

unit cell parameters, total density of states in the pristine crystal, and bandgap do not 

vary with T8-10.

Note S4: The calculations of optical absorption spectrum

The optical process at a microscopic level is presented from the complex dielectric 

function ε(ω) = ε1(ω) +iε2(ω). The imaginary part ε2(ω) is determined using the formula 

via first-principles calculations (VASP code)11:

       (S8)
ε2(ω) =

2πe2

Ωε0
∑
k,v,c

 |⟨Ψc
k|û ⋅ r|Ψv

k⟩|2δ(Ec
k - Ev

k - ℏω)

Where  is the light frequency,  and  are, respectively, the conduction and valence 𝜔 Ψ𝑐
𝑘 Ψ𝑣

𝑘

band wave functions at the k space calculated within the HSE approach. The vector  𝑢̂

points along the polarization of the incident electric field. The real part of the dielectric 



functions is computed from ε2(ω) using the Kramers–Kronig relation in the form

                 (S9)
ε1(ω) = 1 +

2
π

p
∞

∫
0

 
ω'ε2(ω')

ω'2 - ω2
dω'

where p means the principal value of the integral. Then, the absorption coefficient α(ω) 

of the material determines the nature of transition in semiconductors and can be 

calculated directly from the dielectric function:

              (S10)
α(ω) = 2

ω
c [ ε2

1(ω) - ε2
2(ω) - ε1(ω)]

1
2

where c is the speed of light in a vacuum. 

The data post processing is carried out via VASPKIT code12.

Note S5: The convergence of defect formation energy for different supercell sizes, 

taking the calculation of Nai
1+ defect formation energy for an example
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Fig. S1. The calculated HSE formation energies (eV) for Nai
1+ defect for different NaBiO3 

supercell sizes (120 atoms-2 × 2 × 1, 162 atoms-3 × 2 × 1, and 270 atoms-3 × 3 × 1 supercells) 

under oxygen-rich growth conditions with Fermi energy EF = 0.

As shown in Fig. S1, the change in the Nai
1+ defect formation energy from 2×2×1 

(120 atoms) to 3×3×1 (270 atoms) supercells is less than 0.1 eV, the defect formation 

energy of Nai
1+ converges at the adopted 2 × 2 × 1 supercell size.

Note S6: Charge state convergence Test in NaBiO3

When the defect formation energy is calculated, each intrinsic defect may have 

different charge states, requiring a convergence test of the formation energy for 

different charge states. Fig. S2 examines the formation energies of all considered 

intrinsic point defects in NaBiO3 relative to the Fermi level, including all possible defect 



charge states. Since different chemical potential growth conditions do not affect the 

formation energy changing trend of each defect with different charge valance states, we 

take the Bi-poor, Na-poor, and O-rich growth conditions at point AHSE in the phase 

diagram (Fig. 2) as an example for the investigations.
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Fig. S2. Formation energies of 8 intrinsic point defects in NaBiO₃ as a function of the Fermi level 

relative to the VBM under Bi-poor, Na-poor, and O-rich growth conditions. Dashed lines represent 

the formation energies of defects at the corresponding charge states, and solid lines represent the 

lowest formation energy among all charge states. The Fermi levels at the VBM and CBM are set to 

be 0.00 eV and 2.62 eV, respectively.

For Bi vacancies as shown in Fig. S2 (e1), considering the negative charge states, 

the corresponding formation energy in the -4 charge states is higher than those of all 

less negative charge states; and for positive charge states, the formation energy of the 

in the +2 valance states is higher than those of all less positive and neutral charge states. 

For O vacancy in NaBiO3, Fig. S2 (e2) shows that the formation energy in the +3 charge 

states is higher than these of all less positive charge states, and the formation energies 

of all negative charge states are higher than those of positive charge states. Hence, the 

lowest formation energy changing curve with Fermi energy in the entire bandgap range 

is composed of the formation energies in the +2 and 0 charge states. For Na vacancy 

defect, the formation energy of the -1 valance states is lower than those of all positive 

and more negative charge states in the whole Fermi energy range in Fig. S2 (e3). The 

formation energies of the anti-site defect BiNa in different chare states as in Fig. S2 (e4) 

indicates that the formation energy in the +3 is higher than those of in the +1 and +2 

charge states, but the formation energy in the +4 charge states is lower than that in the 

+2 valance states. Thus, the lowest formation energy changing curve with Femi energy 

in the entire bandgap range is composed of the formation energies in the +4 and +2 

charge states. For O interstitials, Fig. S2 (e5) displays that the formation energy in the 

+4 charge is the highest among positive charge states; and for negative charge states, 

the formation energy increases as the charge state decreases. The lowest formation 

energy changing curve with Fermi energy in the entire bandgap range is composed of 

the formation energies in the +3 and 0 charge states. The defect Na interstitial in 

NaBiO3, Fig. S2 (e6) presents that the formation energy in the +1 charge states is the 

lowest among all charge states in the whole Fermi energy range. For the anti-site defect 

NaBi in Fig. S2 (e7), the formation energy increases with the increasing charge state 

among positive charge states and is higher than that in neutral charge state; for negative 

charge states, the formation energy in the -4 charge at a given Fermi energy is the 

highest. For intrinsic Bi interstitial, the formation energy in the +4 charge is higher than 

those of all positive charge states; and for negative charge states, the formation energy 

increases as the charge state decreases and is higher than that in the neutral charge state 



at a given Fermi energy. The lowest formation energy changing curve with Fermi 

energy in the entire Fermi level range are composed of the formation energies in the +3 

and +2 charge sates.

Note S7: The defect and carrier concentrations as a Function of ΔμNa 
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Fig. S3. The calculated concentrations of carriers and major intrinsic defects (solid color line, left 

axis) in NaBiO3 and the self-consistent Fermi level by HSE method (red dashed line, right axis), 

taking ΔμNa as variable along the AHSEEHSECHSE curve in Fig. 2, (a) 300K and (b) 523K under 

thermodynamic equilibrium conditions; and (c) when the temperature is quenched from 523K to 

300K under non-thermodynamic equilibrium conditions. 
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Fig. S4. Under the fixed extrinsic donor doping concentration [D+] =5×1021 cm−3, the calculated 

concentrations of carriers and major intrinsic defects (solid color line, left axis) in NaBiO3 and the 

self-consistent Fermi level by HSE method (red dashed line, right axis), taking ΔμNa as variable 

along the AHSEEHSECHSE curve in Fig. 2, (a) 300K and (b) 523K under thermodynamic equilibrium 

conditions; and (c) when the temperature is quenched from 523K to 300K under non-

thermodynamic equilibrium conditions.
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Fig. S5. Under the fixed extrinsic acceptor doping concentration [A-] =5×1021 cm−3, the calculated 

concentrations of carriers and major intrinsic defects (solid color line, left axis) in NaBiO3 and the 

self-consistent Fermi level by HSE method (red dashed line, right axis), taking ΔμNa as variable 

along the AHSEEHSECHSE curve in Fig. 2, (a) 300K and (b) 523K under thermodynamic equilibrium 



conditions; and (c) when the temperature is quenched from 523K to 300K under non-

thermodynamic equilibrium conditions.
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