Supporting Information

Elucidate the Mechanism of Changes in Emission Properties after Powder Compression into Tablets

Xiaoping, Lei^[a], Qingfeng Wu^[a], Xiangxi Zhang^[a], Qing Zhou^[a,b,c]* and Lingmin Yi^[a]*

[a] X. Lei, Q. Wu, X. Zhang, Prof. Q. Zhou and Prof. L. Yi

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China

[b] Prof. Q. Zhou

Zhejiang Sci-Tech University Shaoxing-Keqiao Research Institute, Building 8, Cross border E-commerce Park, Huashe Street, Keqiao District, Shaoxing City, Zhejiang, 312030, China

[c] Prof. Q. Zhou

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Departmentof Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China

Figure S1. ¹H NMR of D-Cbs powder.

Figure S2. Excitation and emission spectra of powders and flakes at different excitation and emission wavelengths.

Figure S3. (a) Emission spectra of D-Cbs tablet under different excitations. (b) and (c) CIE coordinate diagram of the PL of emission under different excitations.

Figure S4. Lifetimes of D-Cbs powder and tablet at different excitation and emission wavelengths.

	τ ₁ [ns]	A1 [%]	τ ₂ [ns]	A2 [%]	73 [ns]	A3 [%]	τ [nds]	λ _{ex} [nm]	λ _{em} [nm]
D-Cbs-P	1.39	17.79	14.24	47.82	59.44	34.39	27.50	254	458
D-Cbs-T	1.50	28.03	13.14	42.00	78.07	29.98	29.34	254	458

Table S2	Summary	of the ns	lifetimes	of samples a
1 able 52.	Summary	of the fis	metimes	of samples."

^[a] All measurements were conducted at ambient conditions. $\lambda_{ex} = excitation$ wavelength used for the lifetime measurement; $\lambda_{em} =$ monitored emission wavelength. $\tau = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_2^3)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$.

Figure S5. Intermolecular interaction of the D-Cbs molecule (numerical unit:Å).

Figure 6. O···O interaction between dimer-p and hexamer-p coupling (numerical unit:Å).

Figure S7. Electrostatic potential analysis of dimer-2-P of D-Cbs powder.

Figure S8. The viability of HeLa cells with the various concentrations of D-Cbs. Error bars±s.d. (n=5)

The original calculation code used:

1) GROMACS software (version: 2020.6-MODIFIED) = OPLS Lysozyme MD simulation title ; Run parameters integrator ; leap-frog integrator = md = 500000; 2 * 500000 = 1000 ps (1 ns)nsteps dt = 0.001; 2 fs ; Output control = 50000; save coordinates every 10.0 ps nstxout = 50000; save velocities every 10.0 ps nstvout = 5000; save energies every 10.0 ps nstenergy = 5000; update log file every 10.0 ps nstlog nstxout-compressed = 5000 ; save compressed coordinates every 10.0 ps ; nstxout-compressed replaces nstxtcout compressed-x-grps = System ; replaces xtc-grps ; Bond parameters continuation ; Restarting after NPT = yes constraint algorithm = lincs ; holonomic constraints constraints = all-bonds ; all bonds (even heavy atom-H bonds) constrained lincs iter ; accuracy of LINCS = 1 lincs order = 4; also related to accuracy ; Neighborsearching cutoff-scheme = Verlet ns type = grid ; search neighboring grid cells nstlist = 10 ; 20 fs, largely irrelevant with Verlet scheme rcoulomb = 1.0: short-range electrostatic cutoff (in nm) rvdw = 1.0; short-range van der Waals cutoff (in nm) : Electrostatics coulombtype = PME; Particle Mesh Ewald for long-range electrostatics ; cubic interpolation pme order = 4 = 0.16 fourierspacing ; grid spacing for FFT ; Temperature coupling is on = V-rescale ; modified Berendsen thermostat tcoupl tc-grps = system; two coupling groups - more accurate tau t = 0.1; time constant, in ps ; reference temperature, one for each group, in K ref t = 300; Pressure coupling is on pcoupl = Parrinello-Rahman ; Pressure coupling on in NPT pcoupltype = semiisotropic ; uniform scaling of box vectors ; time constant, in ps tau p = 5.0; reference pressure, in bar = 40.0ref p 40.0 compressibility = 04.5e-5 ; isothermal compressibility, bar^-1 ; Periodic boundary conditions pbc = xyz ; 3-D PBC ; Dispersion correction : account for cut-off vdW scheme DispCorr= EnerPres ; Velocity generation gen vel ; Velocity generation is off = no

!D3 GCP(DFT/SV) b3lyp def2-SVP miniprint %maxcore 1800 %pal nprocs 20 end %tddft nroots 5 dosoc true tda false printlevel 3 end * xyz 0 1