Electronic Supplementary Information for

Threshold Photoelectron Spectroscopy of Organosulfur Radicals

Emil Karaev,^a Dorothee Schaffner,^a Marius Gerlach,^a Patrick Hemberger,^b AnGayle K. Vasiliou,^c and Ingo Fischer^{*a}

^a Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany. E-mail: ingo.fischer@uni-wuerzburg.de

^b Paul Scherrer Institute, Villigen 5232, Switzerland, e-mail: patrick.hemberger@psi.ch

^c Middlebury College Department of Chemistry and Biochemistry, Middlebury VT 05753, e-mail: avasiliou@middlebury.edu

Precursor TPES and dissociative photoionization	S2 – S3
Potential energy surface	S4
Calculated Geometries and Vibrations of several molecules	S5 – S11
and states	
Notes and References	S11

Precursor TPES and dissociative photoionization

Figure S1: ms-TPES of the precursor m/z 94 from 8.25 - 11.0 eV. A He(I) photoelectron spectrum was first published by Kimura *et al.* in 1980 with an IE of 8.3 eV. In 1993 Li *et al.* published a more precise IE of $8.18 \pm 0.03 \text{ eV}$ through photoionization efficiency curves. A first TPE spectrum was published by Chiang *et al.* in 1999.^[2-5]

Figure S2: Breakdown diagram of the dissociative photoionization of the precursor $(CH_3)_2S_2$ to $CH_3S_2^+$, $CH_3SCH_2^+$ and $CH_{2\cdot4}S^+$. It is in agreement with the data from Hrodmarsson et al.^[1]

Figure S3: Ion velocity map images (VMI) of m/z 46 – 48 (CH_2S^+ , CH_3S^+ , CH_3SH^+) at 800 K. The signal at 10.5 eV results from direct photoionization of the pyrolysis products and is not affected by dissociative photoionization (DPI). Even at 11.5 eV DPI only contributes to a lower extend to these mass channels, as evident from the small signals at high kinetic energy release.

Potential energy surface

Figure S4: Scan of the displacements of normal modes v_8^+ and v_9^+ . The local minimum in the middle corresponds to the structure CH₂HS, where the hydrogen sits above the C-S bond. The global minimum corresponds to the mercaptomethyl radical cation CH₂SH⁺. A combination of v_8^+ and v_9^+ leads barrierless to the global minimum. Hence the ZPE should be sufficient to transfer the local minimum to the global one.

Calculated Ionization Energies, Geometries and Vibrations of several molecules and states

	CBS-QB3	G4	W1BD
$CH_2SH X^{+2}B_2 \leftarrow X^{-1}A_1$	7.50	7.52	7.57
$CH_3S X^+ {}^3A'' \leftarrow X {}^2A'$	9.23	9.26	9.37
$CH_3S_2X^+ {}^1A' \leftarrow X {}^2A'$	8.61	8.60	8.61
$CH_3S_2X^+ {}^3A'' \leftarrow X {}^2A'$	9.18	9.21	9.20
$S_2H X^+ {}^1A' \leftarrow X {}^2A''$	9.22	9.22	9.26
$S_2H a^+ {}^3A'' \leftarrow X {}^2A''$	9.59	9.61	9.62
$CH_3SH\:X^+\:{}^2A'' \leftarrow X\:{}^1A'$	9.45	9.44	9.45
$CH_2S X^+ {}^2B_2 \leftarrow X {}^1A_1$	9.35	9.38	9.39

Table 1: Adiabatic Ionization energies using different composite methods

<u>CH₃S₂:</u>

Table 2: Cartesian Coordinates in Å of CH_3S_2 in its X $^2A^{\prime\prime}$ state

Atom	X	Y	Z
S	-2.159822	-0.276096	-0.007522
S	-0.209972	-0.177077	0.003536
С	0.362540	-1.894386	0.000573
Н	-0.003027	-2.396821	-0.891238
Н	1.451319	-1.874561	-0.000423
Н	-0.001234	-2.399696	0.891529

Table 3: Vibrations of CH₃S₂ in its X ²A" state

Vibration	Wavenumbers	Description
ν ₁	3180	Asymmetric CH ₂ stretching
ν ₂	3170	Asymmetric CH ₃ stretching
ν ₃	3070	Symmetric CH ₃ stretching
ν ₄	1470	Symmetric CH ₃ scissoring
ν ₅	1460	Asymmetric CH ₃ scissoring
ν ₆	1350	CH₃ umbrella
ν ₇	980	CH ₃ wagging
ν ₈	940	CH₃ wagging
ν ₉	720	S-C stretching
ν ₁₀	630	S-S stretching
ν ₁₁	260	S-S-C bending
ν ₁₂	110	CH ₃ rotation

Table 4: Cartesian Coordinates in Å of $CH_3S_2\,\text{in}$ its X^{\star} $^1A'$ state

Atom	Х	Y	Z
s	-1.3135640	0.2813330	0.0014720
S	0.3174530	-0.6257030	0.0014150

С	1.6829900	1.1044050	0.0044360
Н	1.6529960	0.0478250	0.9380430
Н	2.5923900	-0.0478250	-0.0970400
Н	1.5944490	1.1933440	-0.8667160

Table 5: Vibrations of CH_3S_2 in its X^{+ 1}A' state

Vibration	Wavenumbers	Description
ν_1	3180	Asymmetric CH ₂ stretching
ν ₂	3090	Asymmetric CH ₃ stretching
ν ₃	3010	Symmetric CH ₃ stretching
ν_4	1410	Symmetric CH ₃ scissoring
ν_5	1400	Asymmetric CH ₃ scissoring
ν ₆	1320	CH₃ umbrella
ν ₇	970	CH ₃ wagging
ν_8	840	CH ₃ wagging
Vg	740	S-S stretching
v_{10}	630	S-C stretching
ν ₁₁	280	S-S-C bending
ν ₁₂	100	CH ₃ rotation

Table 6: Cartesian Coordinates in Å of CH_3S_2 in its a* $^3A"$ state

Atom	X	Y	Z
S	-2.1382510	-0.2826630	-0.0121410
S	-0.2012290	-0.1708750	0.0081810
С	0.3531130	-1.9208630	0.0009940
Н	-0.0097300	-2.4006500	-0.9037830
Н	1.4384240	-1.8388600	-0.0033140
Н	-0.0025240	-2.4047270	0.9065200

Table 7: Vibrations of CH₃S₂ in its a^{+ 3}A" state

Vibration	Wavenumbers	Description
ν_1	3210	Asymmetric CH ₂ stretching
ν ₂	3200	Asymmetric CH ₃ stretching
ν ₃	3080	Symmetric CH ₃ stretching
ν_4	1450	Symmetric CH ₃ scissoring
ν ₅	1440	Asymmetric CH ₃ scissoring
ν ₆	1350	CH₃ umbrella
ν ₇	980	CH₃ wagging
ν ₈	940	CH ₃ wagging
ν ₉	630	S-S stretching
v_{10}	620	S-C stretching
ν ₁₁	210	S-S-C bending
ν ₁₂	110	CH ₃ rotation

Table 8: Cartesian Coordinates in Å of CH_3S_2 in its A+ $^1A^{\prime\prime}$ state

Atom	X	Y	Z
S	-2.0457850	-0.2041220	0.3990820
S	-0.2906470	-0.2330680	-0.3910150
С	0.3464640	-1.9327200	-0.0526110

Н	-0.3159580	-2.6525510	-0.5265220
Н	1.3287270	-1.9182640	-0.5217420
Н	0.4162220	-2.0680250	1.0233740

Table 9: Vibrations of CH_3S_2 in its A^{+ 1}A" state

Vibration	Wavenumbers	Description
ν ₁	3210	Asymmetric CH ₂ stretching
ν ₂	3200	Asymmetric CH ₃ stretching
ν ₃	3080	Symmetric CH ₃ stretching
ν_4	1450	Symmetric CH ₃ scissoring
ν_5	1440	Asymmetric CH ₃ scissoring
ν ₆	1330	CH₃ umbrella
ν ₇	960	CH ₃ wagging
ν ₈	940	CH ₃ wagging
ν ₉	670	S-S stretching
ν ₁₀	590	S-C stretching
ν ₁₁	210	S-S-C bending
ν ₁₂	70	CH ₃ rotation

<u>HS₂</u>: CCSD(T)/cc-pVTZ and ω B97x-D3/cc-pVTZ for the excited state

Table 10: Cartesian Coordinates in Å of HS $_2$ in its X $^2\text{A"}$ state

Atom	X	Y	Z
S	-1.6204750	0.1664060	-0.0030270
S	0.3608730	-0.0437240	0.0043110
Н	0.7565250	1.2476990	-0.0407860

Table 11: Vibrations of HS_2 in its X ²A" state

Vibration	Wavenumbers	Description
ν ₁	2580	S-H stretching
ν ₂	900	S-S-C bending
ν ₃	590	S-S stretching

Table 12: Cartesian Coordinates in Å of $HS_2\,\textsc{in}$ its X^+ $^1\textsc{A}$ state

Atom	X	Y	Z
S	-1.5770390	0.1668720	-0.0030430
S	0.3186390	-0.0456680	0.0043790
Н	0.7553230	1.2491750	-0.0408380

Table 13: Vibrations of HS_2 in its X⁺ ¹A' state

Vibration	Wavenumbers	Description
ν ₁	2520	S-H stretching
ν ₂	940	S-S-C bending
ν ₃	680	S-S stretching

Table 14: Cartesian Coordinates in Å c	of HS ₂ in its a ^{+ 3} A" state
--	---

Atom	Х	Y	Z
S	-1.5772880	0.2083990	-0.0044930
S	0.3877440	-0.0826400	0.0056700
Н	0.6864660	1.2446210	-0.0406790

Table 15: Vibrations of HS_2 in its a^{+ 3}A" state

Vibration	Wavenumbers	Description
ν ₁	2570	S-H stretching
ν ₂	760	S-S-C bending
ν ₃	600	S-S stretching

Table 16: Cartesian Coordinates in Å of HS $_2$ in its a^+ $^3\text{A"}$ state

Atom	X	Y	Z
S	-1.5614070	0.2042800	-0.0043490
S	0.3595040	-0.0780490	0.0055100
Н	0.6988250	1.2441490	-0.0406630

Table 17: Vibrations of HS_2 in its a^{+ 3}A" state

Vibration	Wavenumbers	Description
ν ₁	2550	S-H stretching
ν ₂	800	S-S-C bending
ν ₃	660	S-S stretching

<u>CH₄S:</u>

Table 18: Cartesian Coordinates in Å of CH₄S in its X $^1\!A'$ state

Atom	X	Y	Z
S	-2.584560	0.636421	0.000824
Н	-2.833893	1.952225	0.001295
С	-0.775553	0.743816	0.000178
Н	-0.408946	-0.280115	-0.000419
Н	-0.407936	1.244273	-0.891748
Н	-0.407243	1.243477	0.892264

Table 19: Vibrations of CH_4S in its X ¹A' state

Vibration	Wavenumbers	Description
ν ₁	3170	Asymmetric CH ₃ stretching
ν ₂	3170	Asymmetric CH ₂ stretching
ν ₃	3080	Symmetric CH ₃ stretching
ν ₄	2750	S-H stretching
ν ₅	1490	Asymmetric CH ₃ scissoring
ν ₆	1480	Asymmetric CH ₃ scissoring
ν ₇	1370	CH₃ umbrella
ν ₈	1100	H-S-C bending + CH ₃ wagging

ν ₉	980	CH ₃ wagging
ν ₁₀	810	H-S-C bending
ν ₁₁	740	S-C stretching
V ₁₂	230	H-S-C-H dihedral

Table 20: Cartesian Coordinates in Å of CH₄S in its X⁺ ²A" state

Atom	X	Y	Z
S	-2.54409	0.63636	0.00116
Н	-2.8058	1.96536	0.00086
С	-0.77489	0.71303	0.00022
Н	-0.39463	-0.30440	-0.00061
Н	-0.44987	1.26542	-0.88753
Н	-0.44886	1.26434	0.88829

Table 21: Vibrations of CH₄S in its X^{+ 2}A" state

Vibration	Wavenumbers	Description
ν ₁	3200	Asymmetric CH ₃ stretching
ν ₂	3100	Asymmetric CH ₂ stretching
ν ₃	3030	Symmetric CH ₃ stretching
ν_4	2660	S-H stretching
ν_5	1440	Asymmetric CH ₃ scissoring
ν ₆	1420	Asymmetric CH ₃ scissoring
ν ₇	1330	CH₃ umbrella
ν ₈	1110	H-S-C bending + CH₃ wagging
ν ₉	840	CH₃ wagging
v_{10}	810	H-S-C bending
ν ₁₁	720	S-C stretching
ν ₁₂	250	H-S-C-H dihedral

<u>CH₃S</u>:

Table 22: Cartesian Coordinates in Å of CH_3S in its X $^2\text{A}\text{'}$ state

Atom	X	Y	Z
S	-2.38120	0.80604	1.47306
С	-2.92689	-0.04700	-0.00082
Н	-2.60388	-1.08583	-0.00891
Н	-2.60384	0.46735	-0.90354
Н	-4.02025	-0.03315	0.01992

Table 23: Vibrations of CH₃S in its X^{+ 2}A' state

Vibration	Wavenumbers	Description	
v ₁ 3150		Asymmetric CH ₂ stretching	
ν ₂	3130	Asymmetric CH ₃ stretching	
ν ₃	3050	Symmetric CH ₃ stretching	
ν_4	1480	Symmetric CH ₃ scissoring	
ν ₅	1380	Aymmetric CH ₃ scissoring	
ν ₆	1350	CH₃ umbrella	

ν ₇	880	CH ₃ wagging
ν ₈	750	S-C stretching
ν ₉	440	CH₃ wagging

Table 24: Cartesian Coordinates in Å of CH_3S in its X^+ $^3\text{A}_2$ state

Atom	X	Y	Z
S	-2.37421	0.77506	1.42153
С	-2.95144	-0.04083	0.00767
Н	-2.58069	-1.07385	0.01659
Н	-2.58065	0.48299	-0.88267
Н	-4.04906	-0.03595	0.0166

Table 25: Vibrations of CH₃S in its X^{+ 3}A₂ state

Vibration Wavenumbers		Description	
ν ₁	3080	Asymmetric CH ₂ stretching	
ν ₂	3080	Asymmetric CH ₃ stretching	
ν ₃	2980	Symmetric CH ₃ stretching	
ν ₄	1360	Asymmetric CH ₃ scissoring	
ν_5	1350	Symmetric CH ₃ scissoring	
ν ₆	1320	CH ₃ umbrella	
ν ₇	830	CH ₃ wagging	
ν ₈	820	CH ₃ wagging	
ν ₉	780 S-C stretching		

Table 26: Cartesian Coordinates in Å of CH₃S in its b^+ ¹A₁ state.

Atom	Х	Y	Z
S	0.77331	0.01549	-0.00037
С	2.48722	0.03294	0.00004
Н	2.84044	-1.01556	-0.00157
Н	2.86290	0.54186	-0.89882
Н	2.86250	0.53890	0.90073

Table 27: Vibrations of CH_3S in its b^{+ 1}A₁ state.

Vibration Wavenumbers		Description	
ν ₁	3110	Asymmetric CH ₂ stretching	
ν ₂	3050	Asymmetric CH ₃ stretching	
ν ₃	2950	Symmetric CH ₃ stretching	
ν_4	v_4 1370 Asymmetric CH ₃ scis		
ν_5	ν_5 1330 Symmetric CH ₃ sc		
ν ₆	1330	CH₃ umbrella	
ν ₇	890	CH ₃ wagging	
ν ₈	ν ₈ 890 C		
v ₉ 810		S-C stretching	

<u>SCH</u>2:

Atom	Х	Y	Z
S	-1.59438	1.51332	-0.00005
С	-3.1946	1.51578	0.00003
Н	-3.7726	0.59521	-0.03211
Н	-3.76982	2.43809	0.03224

Table 28: Cartesian Coordinates in Å of CH_2S in its X $\ ^1A_1$ state

Table 29: Vibrations of CH₂S in its X $^{1}A_{1}$ state

Vibration Wavenumbers		Description	
ν ₁ 3190		Asymmetric CH ₂ stretching	
ν ₂	v ₂ 3100 Symmetric CH ₂ stretchir		
v ₃ 1510		Symmetric H-C-H bending	
ν_4	1130 S-C stretching		
v_5 1060 CH ₂ out-of-plan		CH ₂ out-of-plane bending	
ν ₆ 1010		Asymmetric S-C-H bending	

Table 30: Cartesian Coordinates in Å of CH_2S in its X^+ 2B_2 state

Atom	X	Y	Z
S	-1.61405	1.51346	-0.00005
С	-3.19833	1.51569	0.00002
Н	-3.76106	0.57883	-0.03268
Н	-3.75796	2.45443	0.03282

Table 31: Vibrations of CH_2S in its X^+ 2B_2 state

Vibration	Wavenumbers	Description
ν ₁	3160	Asymmetric CH ₂ stretching
ν ₂	3060	Symmetric CH ₂ stretching
ν ₃	1390	Symmetric H-C-H bending
ν ₄	1100	S-C stretching
ν_5	1020	CH ₂ out-of-plane bending
ν ₆	770	Asymmetric S-C-H bending

Notes and references

[1]: H. R. Hrodmarsson, G. A. Garcia, L. Nahon, J.-C. Loison and B. Gans, *J. Mol. Spectrosc.*, 2021, **381**, 111533.

[2]: W. Li, S. Chiu, Z. Ma, C. Liao and C. Y. Ng, *The Journal of Chemical Physics*, 1993, **99**, 8440–8444.

[3]: J. J. Butler, T. Baer and S. A. Evans Jr, *Journal of the American Chemical Society*, 1983, **105**, 3451–3455.

[4]: S.-Y. Chiang, C.-I. Ma and D.-J. Shr, *The Journal of Chemical Physics*, 1999, **110**, 9056–9063.

[5]: K. Kimura, Handbook of Hel photoelectron spectra of fundamental organic molecules, Japan Scientific Society Press, 1981.