PCCP

ARTICLE TYPE

Enhancing the Stability and Performance of Ni-rich Cathode Materials through Ta Doping: A Combined Theoretical and Experimental Study^{\dagger}

Frederike Monsees, $^{\ast a,b}$ Casimir Misiewicz, c Mert Dalkilic, b Diddo Diddens d and Andreas Heuer a

^a Institute for Physical Chemistry, University of Münster, Münster

- ^b PowerCo
- ^c Department of Chemistry Ångström Laboratory, Uppsala University, Uppsala
- ^d Helmholtz Institute Münster (IMD-4), Forschungszentrum Jülich GmbH, Münster

1 Supplemental

Table S1 Oxygen vacancy impact factors

Oxygen	Valence	Å	Å L	Å	d Å	a Å
Energy, eV	Oxygen	a _{Vo-Ta} ,A	a _{Vo-Li} ,A	a _{Vo-Ni} ,A	a _{V0-0} ,A	$a_{V_0^x-Li}$,A
2.03	-0.96	1.96	4.37	1.91	2.52	5.60
2.03	-1.03	2.06	2.02	1.90	2.58	5.86
2.46	-0.96	2.00	3.45	1.88	2.51	5.78
2.43	-0.91	6.14	2.10	1.89	2.52	4.72
1.60	-0.90	8.21	2.10	1.89	2.52	4.72
1.75	-0.90	8.25	2.10	1.89	2.52	4.72
2.06	-0.90	6.20	2.10	1.89	2.52	4.72
2.04	-0.90	8.10	2.11	1.89	2.53	4.72
2.02	-0.90	6.01	2.12	1.89	2.53	4.72
2.05	-0.93	7.04	2.10	1.88	2.52	4.73
2.03	-0.91	4.48	2.11	1.88	2.51	4.73
2.04	-0.84	6.65	3.54	1.88	2.54	4.74
2.08	-0.71	4.41	4.49	1.87	2.49	5.57
2.02	-0.84	5.90	2.10	1.87	2.51	5.88
2.03	-0.76	3.73	3.55	1.86	2.49	5.77
2.06	-0.76	3.42	3.56	1.88	2.49	5.77
1.66	-0.84	6.06	2.09	1.87	2.51	5.88
1.63	-0.84	4.74	2.09	1.87	2.51	5.88
2.48	-0.74	4.37	3.54	1.88	2.49	5.78
2.41	-0.83	6.01	3.55	1.89	2.51	4.74
2.06	-0.75	6.44	3.54	1.86	2.48	5.77
2.21	-0.76	3.35	3.51	1.86	2.49	5.77
2.37	-0.73	4.69	4.50	1.87	2.48	5.57
2.29	-0.85	6.12	2.09	1.87	2.50	5.88
1.81	-0.83	8.17	3.54	1.89	2.52	4.73
1.78	-0.73	4.64	4.51	1.87	2.48	5.57
2.12	-0.83	6.80	3.54	1.89	2.52	4.73
1.96	-0.85	4.66	2.10	1.87	2.51	5.88
2.04	-0.74	5.83	3.54	1.86	2.48	5.77
2.06	-0.74	4.62	3.55	1.86	2.48	5.77
2.12	-0.85	4.37	2.09	1.87	2.51	5.87
2.85	-0.83	4.47	2.13	1.88	2.48	5.27
2.62	-0.88	3.56	2.03	1.86	2.48	5.26
2.08	-0.87	5.91	2.03	1.86	2.48	5.26
1.81	-0.83	4.48	2.10	1.86	2.52	5.88
2.67	-0.85	6.50	2.11	1.87	2.48	5.27
1.92	-0.84	8.06	2.13	1.88	2.50	5.27
1.94	-0.84	4.70	2.13	1.88	2.50	5.27
2.32	-0.86	6.53	2.10	1.88	2.50	5.27
2.24	-0.86	6.66	2.11	1.88	2.50	5.27

Fig. S1 Correlation matrix of oxygen vacancy impact factors.

Fig. S2 Extended gas evolution profiles for O_2 and CO_2 during cycling of pristine and Ta-doped NMC811

Fig. S3 SEM characterization of Ta-doped samples (reprinted from [?, DOI: 10.1149/1945-7111/ac8a1b] with permission)

Fig. S4 Electrochemical performance comparison of 0.5 mol% Ta-doped vs. pristine samples: discharge capacity, capacity retention, and voltage profiles (reprinted from [?, DOI: 10.1149/1945-7111/ ac8a1b] with permission)

Fig. S5 X-ray powder diffraction patterns of Ta-doped and undoped samples (reprinted from [?, DOI: 10.1149/1945-7111/ac8a1b] with permission)

	Table S2	Training	structures	for the	transition	metal	sublattice
--	----------	-----------------	------------	---------	------------	-------	------------

no	Ni	Со	Mn	E _{DFT}	E _{CE}	Dist to GSL meV/f.u.	cell formula	space group
1	0.00	0.00	1.00	-21.80	-21.80	0.000	LiMnO	R-3m
2	0.00	0.11	0.89	-21.51	-21.55	0.020	LioMnoCoO10	R-3
3	0.00	0.11	0.89	-21.53	-21.55	0.000	Li _o Mn _o CoO ₁₀	P-1
4	0.00	0.13	0.88	-21.50	-21.52	0.002	LioMn ₇ CoO ₁₆	C2/m
5	0.00	0.10	0.86	-21.00	-21.02	0.012	Li-Mn _c CoO ₁₆	C2/m
6	0.00	0.14	0.86	-21.11	-21.15	0.012	Li_{14}	C2/m
7	0.00	0.17	0.83	-21.39	-21 43	0.009	LicMn=CoO ₁₀	P2/m
8	0.00	0.20	0.80	-21.30	-21.33	0.014	Li ₁₀ Mn ₂ Co ₂ O ₂₀	P-1
9	0.00	0.20	0.80	-21.30	-21.35	0.010	Li ₁₀ Mn ₀ Co ₂ O ₂₀	P2/m
10	0.00	0.20	0.80	-21.31	-21.30	0.000	Li-Mn CoO	R-3m
11	0.00	0.29	0.71	-21.09	-21.07	0.010	$Li_7 Mn_5 Co_2 O_1 $	C2/m
12	0.00	0.38	0.63	-20.86	-20.88	0.023	$Li_0Mn_FCo_2O_{16}$	P1
13	0.00	0.40	0.60	-20.80	-20.74	0.021	$Li_{10}Mn_{\epsilon}Co_{4}O_{20}$	P-1
14	0.00	0.43	0.57	-20.73	-20.67	0.020	$Li_7Mn_4Co_2O_{14}$	C2/m
15	0.00	0.44	0.56	-20.71	-20.66	0.000	$Li_0Mn_5Co_4O_{10}$	P-3m1
16	0.00	0.50	0.50	-20.54	-20.51	0.033	$Li_{0}Mn_{4}Co_{4}O_{14}$	C2/c
17	0.00	0.50	0.50	-20.55	-20.52	0.029	$Li_{10}Mn_FCO_FO_{20}$	C2
18	0.00	0.56	0.44	-20.41	-20.39	0.030	$Li_0Mn_4Co_5O_{10}$	P-1
19	0.00	0.57	0.43	-20.37	-20.34	0.024	$Li_7 Mn_2 Co_4 O_{14}^{10}$	C2/m
20	0.00	0.60	0.40	-20.28	-20.22	0.044	$Li_{5}Mn_{2}Co_{2}O_{10}$	C2/m
21	0.00	0.60	0.40	-20.28	-20.26	0.043	$Li_{10}Mn_4Co_6O_{20}$	C2/m
22	0.00	0.60	0.40	-20.31	-20.31	0.019	$Li_{10}Mn_4Co_6O_{20}^{20}$	$P2_1/m$
23	0.00	0.63	0.38	-20.23	-20.23	0.038	$Li_{o}Mn_{o}Co_{F}O_{14}$	P-1
24	0.00	0.63	0.38	-20.24	-20.18	0.020	$Li_{0}^{\circ}Mn_{2}^{3}Co_{5}O_{16}^{10}$	C2/m
25	0.00	0.67	0.33	-20.12	-20.10	0.044	$Li_0Mn_2Co_6O_{10}$	P-1
26	0.00	0.70	0.30	-20.05	-20.00	0.029	$Li_{10}Mn_2Co_7O_{20}$	P2/m
27	0.00	0.75	0.25	-19.90	-19.88	0.054	$Li_8Mn_2Co_6O_{16}$	C2/c
28	0.00	0.75	0.25	-19.94	-19.86	0.015	$Li_8Mn_2Co_6O_{16}$	C2/m
29	0.00	0.78	0.22	-19.81	-19.83	0.079	$Li_{9}Mn_{2}Co_{7}O_{18}$	C2/m
30	0.00	0.83	0.17	-19.72	-19.72	0.033	$Li_{6}Mn\overline{C}o_{5}O_{12}$	P-1
31	0.00	0.83	0.17	-19.75	-19.67	0.000	$Li_6MnCo_5O_{12}$	P-3m1
32	0.00	0.86	0.14	-19.18	-19.63	0.513	$Li_7MnCo_6O_{14}$	R-3m
33	0.00	0.90	0.10	-19.57	-19.58	0.011	Li ₁₀ MnCo ₉ O ₂₀	C2/m
34	0.00	1.00	0.00	-19.33	-19.33	0.000	LiCoO ₂	R-3m
35	0.10	0.20	0.70	-20.86	-20.84	0.009	Li ₁₀ Mn ₇ Co ₂ NiO ₂₀	C2/m
36	0.10	0.40	0.50	-20.30	-20.28	0.073	$Li_{10}Mn_5Co_4NiO_{20}$	Ст
37	0.10	0.40	0.50	-20.34	-20.33	0.032	$Li_{10}Mn_5Co_4NiO_{20}$	P1
38	0.10	0.50	0.40	-20.08	-20.10	0.041	Li ₁₀ Mn ₄ Co ₅ NiO ₂₀	P1
39	0.10	0.70	0.20	-19.61	-19.58	0.018	Li ₁₀ Mn ₂ Co ₇ NiO ₂₀	P2/m
40	0.10	0.70	0.20	-19.62	-19.60	0.011	Li ₁₀ Mn ₂ Co ₇ NiO ₂₀	P2/m
41	0.10	0.80	0.10	-19.35	-19.33	0.020	Li ₁₀ MnCo ₈ NiO ₂₀	P-1
42	0.10	0.80	0.10	-19.36	-19.34	0.013	Li ₁₀ MnCo ₈ NiO ₂₀	P2/m
43	0.10	0.90	0.00	-19.06	-19.05	0.009	Li ₁₀ Co ₉ NiO ₂₀	P-1
44	0.10	0.90	0.00	-19.06	-19.06	0.006	Li ₁₀ Co ₉ NiO ₂₀	P-1
45	0.11	0.00	0.89	-21.31	-21.32	0.000	Li ₉ Mn ₈ NiO ₁₈	C2/m
46	0.11	0.11	0.78	-21.03	-21.03	0.007	Li ₉ Mn ₇ CoNiO ₁₈	P1
47	0.11	0.33	0.56	-20.47	-20.49	0.017	Li ₉ Mn ₅ Co ₃ NiO ₁₈	P1
48	0.11	0.89	0.00	-19.03	-19.01	0.011	Li ₉ Co ₈ NiO ₁₈	C2/m
49	0.11	0.89	0.00	-19.03	-19.03	0.002	Li ₉ Co ₈ NiO ₁₈	C2/m
50	0.13	0.00	0.88	-21.25	-21.21	0.001	Li ₈ Mn ₇ NiO ₁₆	P-1
51	0.13	0.13	0.75	-20.92	-20.94	0.016	Li ₈ Mn ₆ CoNiO ₁₆	C2/m
52	0.13	0.75	0.13	-19.36	-19.34	0.016	Li ₈ MnCo ₆ NiO ₁₆	C2/m
53	0.14	0.43	0.43	-20.07	-20.10	0.039	Li ₇ Mn ₃ Co ₃ NiO ₁₄	P1
54	0.14	0.71	0.14	-19.36	-19.33	0.028	LI7MInCo5NIO14	PI D 1
55	0.14	0.86	0.00	-18.94	-18.92	0.012	$L_7CO_6NO_{14}$	P-1
56	0.17	0.00	0.83	-21.06	-21.08	0.002	LI ₆ MIn ₅ NIO ₁₂	P-1
57	0.17	0.17	0.67	-20.65	-20.66	0.000	Li ₆ Mn ₄ CoNiO ₁₂	P-1
58	0.17	0.33	0.50	-20.21	-20.18	0.026	$Li_6Mn_3Co_2NiO_{12}$	P-1
59	0.17	0.50	0.33	-19./8	-19./9	0.039	$Li_6 Win_2 CO_3 NiO_{12}$	PI C2/m
6U	0.1/	0.83	0.00	-18.88	-18.80	0.007	$Li_6 Co_5 NiO_{12}$	C_2/m
01 60	0.20	0.40	0.40	-19.90	-19.92	0.020	Li_{10} WI1 ₄ CO ₄ N1 ₂ O ₂₀	UZ/C
0∠ 62	0.20	0.50	0.30	-19.01 10 70	-17.30 10 70	0.033	L_{10}^{101113} C_{05}^{1012} C_{20}^{1013}	r_1 C_2/m
64	0.20	0.00	0.00	-10./Y _20.01	-10./2	0.003	$L_{10} C_{8} N_{12} C_{20}$	$\frac{02}{m}$
UH	0.44	0.00	0.70	-20.01	-20.00	0.000	LIQ1011171112018	04/ IIL

no	Ni	Со	Mn	E _{DFT}	E _{CE}	Dist to GSL meV/f.u.	cell formula	space group
65	0.22	0.33	0.44	-19.96	-19.98	0.026	LioMn4Co2Ni2O10	P-1
66	0.22	0.33	0.44	-19.96	-19.98	0.024	$Li_{0}^{9}Mn_{4}^{4}Co_{2}Ni_{2}^{2}O_{10}^{18}$	P-1
67	0.22	0.33	0.44	-19.96	-19.94	0.023	$Li_0Mn_4Co_2Ni_2O_{10}$	C2/m
68	0.22	0.33	0.44	-19.99	-19.97	0.001	$Li_0Mn_4Co_2Ni_2O_{10}$	P-1
69	0.22	0.44	0.33	-19.68	-19.72	0.016	LioMnoCo NioO10	C2
70	0.22	0.56	0.22	-19.39	-19.38	0.020	LioMnoCo-NioO10	P-1
71	0.22	0.67	0.11	-19.06	-19.07	0.020	LioMnCocNioOro	C2/m
72	0.22	0.78	0.00	-18 73	-18.68	0.009	Li ₂ Co-Ni ₂ O ₁₂	C2/m
73	0.22	0.78	0.00	-18 73	-18 74	0.005	$Li_2 Co-Ni_2 O_{18}$	$C^{2/m}$
74	0.22	0.78	0.00	-18 74	-18 75	0.000	Li Co-Ni O	C2/m
75	0.22	0.70	0.63	-20.35	-20.37	0.000	$Li_{10}Mn_{-}CoNi_{-}O$	Cm
76	0.25	0.10	0.00	-20.05	-20.07	0.023	Li ₂ Mn Co ₂ Ni ₂ O ₁₆	$C^{2/c}$
77	0.25	0.20	0.38	_10 72	_10 74	0.011	Li Mn Co Ni O	D2/C
78	0.25	0.50	0.30	-10.36	-10 40	0.022	Li MnCo-NiO-	$C^{2/m}$
79	0.25	0.50	0.25	-19 42	-19 46	0.007	Li ₄ Mn ₂ Co ₂ Ni ₂ O ₂	P-1
80	0.25	0.50	0.00	-18.66	-18.66	0.000	Li Co-NiO-	$R_{-}3m$
81	0.25	0.75	0.00	-19 79	-19.80	0.000	Li_Mn_Co_Ni_O	P1
82	0.27	0.27	0.45	-10 41	-10.00	0.015	$Li_7 Mn_3 Co_2 Ni_2 O_{14}$	P_1
83	0.27	0.45	0.27	-18 07	-18 00	0.025	Li MnCo Ni O	$C^{2/m}$
84	0.27	0.37	0.14	-18 55	-18 57	0.020	$Li_7 Co_1 Ni_2 O_{14}$	D_1
85	0.27	0.71	0.00	-20.21	-20.22	0.010	$L_1 M_2 C_{14}$	C^{2}
86	0.30	0.10	0.00	-20.21	-20.22	0.009	Li_10 Mn Co Ni O	D1
87	0.30	0.40	0.30	-19.41	-19.39	0.023	Li_{10} Mn Co Ni O	C^2
88	0.30	0.50	0.20	-19.00	-10.04	0.034	Li_10 Mn Co Ni O	D1
80	0.30	0.50	0.20	10 12	10.12	0.020	Li_10 Mn Co Ni O	D1
09	0.30	0.50	0.20	10 02	-19.12 10.01	0.014	Li_10 MnCo Ni O	F 1 D2
90 01	0.30	0.00	0.10	20.21	20.20	0.017	L_{10} Min C_{6} M_{3} C_{20}	$\frac{r_2}{C_2/m}$
02	0.33	0.00	0.07	-20.31	-20.30	0.000	$Li_3 Min_2 NiO_6$	C2/ III D1
02	0.33	0.11	0.30	10.74	10.74	0.002	L_{1} Mp Co Ni O	D 1
93	0.33	0.22	0.11	-19.74	-19.74	0.000	Li MnCo Ni O	C^{2}
2 7 05	0.33	0.50	0.11	-18.76	-18.75	0.021	$L_9^{MIICO_5NI_3O_{18}}$	C^2
96	0.33	0.50	0.11	-18 76	-18 70	0.010	Li MnCo Ni O	Cm
97	0.33	0.56	0.11	-18 76	-18 77	0.016	Li MnCo-Ni-O	C2
08	0.33	0.50	0.11	-18 43	-18 30	0.010	Li_{Co} Ni O	D_1
90	0.33	0.07	0.00	-20.11	-20.12	0.007	$L_{16}^{16}CO_{4}^{10}N_{12}^{10}O_{12}^{12}$	$\frac{1}{C^{2}/m}$
100	0.30	0.00	0.00	-19 39	-19 37	0.000	Li ₈ Mn ₅ Co ₂ Ni ₂ O ₁₆	D1
101	0.38	0.25	0.38	-19 45	-19 41	0.075	Li Mn Co Ni O	P1
102	0.38	0.38	0.25	-19.05	-19.07	0.034	Li ₂ Mn ₂ Co ₂ Ni ₂ O ₁₆	P-1
102	0.38	0.38	0.25	-19.05	-19.02	0.031	Li _o Mn _o Co _o Ni _o O ₁	C^2
104	0.40	0.10	0.50	-19.71	-19.67	0.024	Li ₁₀ Mn ₋ CoNi ₄ O ₂₀	P1
105	0.40	0.10	0.50	-19 73	-19 72	0.003	Li ₁₀ Mn _z CoNi ₄ O ₂₀	C2
106	0.40	0.20	0.40	-19.41	-19.38	0.060	Li ₁₀ Mn ₄ Co ₂ Ni ₄ O ₂₀	P1
107	0.40	0.40	0.20	-18.85	-18.87	0.012	Li ₁₀ Mn ₂ Co ₄ Ni ₄ O ₂₀	C2/c
108	0.40	0.50	0.10	-18.54	-18.51	0.017	Li ₁₀ MnCo-Ni ₄ O ₂₀	P-1
109	0.43	0.00	0.57	-19.85	-19.85	0.005	$Li_7 Mn_4 Ni_9 O_{14}$	P-1
110	0.43	0.29	0.29	-19.04	-19.04	0.010	Li ₇ Mn ₂ Co ₂ Ni ₂ O ₁	P-1
111	0.43	0.43	0.14	-18.60	-18.60	0.016	Li ₇ MnCo ₂ Ni ₂ O ₁₄	P1
112	0.43	0.57	0.00	-18.17	-18.17	0.008	Li-Co Ni ₂ O ₁	P-1
113	0.43	0.57	0.00	-18.17	-18.18	0.004	$Li_7Co_4Ni_2O_{14}$	C2/m
114	0.44	0.11	0.44	-19.47	-19.49	0.013	Li _o Mn ₄ CoNi ₄ O ₁₀	C2/m
115	0.44	0.56	0.00	-17.34	-17.97	0.000	$Li_0^9 Co_5 Ni_4 O_{10}^4$	C2/m
116	0.44	0.56	0.00	-18.08	-18.13	0.053	$Li_0C0_FNi_4O_{10}$	C2/m
117	0.50	0.00	0.50	-19.47	-19.48	0.029	Li ₂ MnNiO ₄	C2/m
118	0.50	0.00	0.50	-19.50	-19.49	0.000	Li _o ² Mn ₄ Ni ₄ O ₁₆	C2/c
119	0.50	0.10	0.40	-19.17	-19.17	0.033	$Li_{10}Mn_4CoNi_5O_{20}$	P-1
120	0.50	0.10	0.40	-19.19	-19.20	0.013	$Li_{10}Mn_4CoNi_5O_{20}$	C2
121	0.50	0.10	0.40	-19.19	-19.21	0.009	Li ₁₀ Mn ₄ CoNi ₅ O ₂₀	P1
122	0.50	0.10	0.40	-19.20	-19.18	0.000	$Li_{10}^{10}Mn_{4}^{7}CoNi_{5}O_{20}^{20}$	C2
123	0.50	0.13	0.38	-19.09	-19.09	0.034	Li ₈ Mn ₂ CoNi ₄ O ₁₆	P2/m
124	0.50	0.20	0.30	-18.87	-18.85	0.025	Li ₁₀ Mn ₂ Co ₂ Ni ₅ O ₂₀	P1
125	0.50	0.30	0.20	-18.59	-18.61	0.003	$Li_{10}Mn_2Co_2Ni_5O_{20}$	P1
126	0.50	0.40	0.10	-18.27	-18.26	0.015	$Li_{10}^{10}Mn Co_4 Ni_5 O_{20}^{20}$	P2
127	0.56	0.00	0.44	-19.15	-19.13	0.034	$Li_0Mn_4Ni_5O_{18}$	P-1
128	0.56	0.00	0.44	-19.17	-19.19	0.013	LioMn	P-1
129	0.56	0.00	0.44	-19.18	-19.16	0.001	$Li_{9}Mn_{4}Ni_{5}O_{18}$	C2
130	0.56	0.11	0.33	-18.85	-18.88	0.002	Li ₉ Mn ₃ CoNi ₅ O ₁₈	C2

no	Ni	Со	Mn	E _{DFT}	E _{CE}	Dist to GSL meV/f.u.	cell formula	space group
131	0.56	0.33	0.11	-18.16	-18.14	0.008	LioMnCo2Ni2O18	P1
132	0.57	0.00	0.43	-19.09	-19.06	0.000	$Li_7 Mn_3 Ni_4 O_{14}$	C2/m
133	0.57	0.43	0.00	-17.77	-17.73	0.009	$Li_7 Co_3 Ni_4 O_{14}$	C2/m
134	0.57	0.43	0.00	-17.78	-17.75	0.000	$Li_7 Co_3 Ni_4 O_{14}^{17}$	P-1
135	0.60	0.10	0.30	-18.63	-18.65	0.000	Li ₁₀ Mn ₃ CoNi ₆ O ₂₀	C2/m
136	0.60	0.20	0.20	-18.30	-18.30	0.000	$Li_{10}Mn_2Co_2Ni_6O_{20}$	C2/m
137	0.60	0.30	0.10	-18.01	-18.00	0.004	Li ₁₀ MnČo ₃ Ňi ₆ Ŏ ₂₀	P-1
138	0.63	0.00	0.38	-18.78	-18.79	0.005	Li ₈ Mn ₃ Ni ₅ O ₁₆	P2/m
139	0.63	0.38	0.00	-17.62	-17.60	0.011	Li ₈ Co ₃ Ni ₅ O ₁₆	P2/m
140	0.63	0.38	0.00	-17.63	-17.60	0.009	$Li_8Co_3Ni_5O_{16}$	P2
141	0.63	0.38	0.00	-17.63	-17.62	0.008	Li ₈ Co ₃ Ni ₅ O ₁₆	C2/m
142	0.67	0.17	0.17	-18.00	-17.94	0.029	Li ₆ MnCoNi ₄ O ₁₂	P-1
143	0.67	0.17	0.17	-18.01	-18.01	0.022	Li ₆ MnCoNi ₄ O ₁₂	P-1
144	0.70	0.10	0.20	-18.04	-18.08	0.003	Li ₁₀ Mn ₂ CoNi ₇ Õ ₂₀	P2/m
145	0.70	0.20	0.10	-17.72	-17.72	0.016	$Li_{10}^{10}MnCo_2Ni_7O_{20}^{10}$	P1
146	0.71	0.00	0.29	-18.26	-18.26	0.006	$Li_7Mn_2Ni_5O_{14}$	P-1
147	0.71	0.00	0.29	-18.27	-18.27	0.000	$Li_7 Mn_2 Ni_5 O_{14}$	P-1
148	0.71	0.14	0.14	-17.82	-17.85	0.008	Li ₇ MnČoŇi5O ₁₄	C2
149	0.71	0.14	0.14	-17.82	-17.82	0.006	Li ₇ MnCoNi ₅ O ₁₄	P1
150	0.71	0.14	0.14	-17.82	-17.83	0.005	Li ₇ MnCoNi ₅ O ₁₄	P1
151	0.75	0.00	0.25	-18.05	-18.03	0.010	Li ₄ MnNi ₃ O ₈	P2/m
152	0.75	0.00	0.25	-18.05	-18.06	0.005	Li ₄ MnNi ₃ O ₈	C2/m
153	0.75	0.13	0.13	-17.67	-17.69	0.008	Li ₈ MnCoNi ₆ O ₁₆	C2/m
154	0.75	0.25	0.00	-17.29	-17.29	0.000	Li ₄ CoNi ₃ O ₈	P2/m
155	0.78	0.00	0.22	-17.89	-17.88	0.009	Li ₉ Mn ₂ Ni ₇ O ₁₈	P-1
156	0.78	0.00	0.22	-17.89	-17.87	0.008	$Li_9Mn_2Ni_7O_{18}$	P-1
157	0.78	0.00	0.22	-17.89	-17.89	0.003	Li ₉ Mn ₂ Ni ₇ O ₁₈	P-1
158	0.78	0.22	0.00	-17.20	-17.13	0.017	Li ₉ Co ₂ Ni ₇ O ₁₈	R-3
159	0.78	0.22	0.00	-17.21	-17.18	0.004	Li ₉ Co ₂ Ni ₇ O ₁₈	P-1
160	0.80	0.10	0.10	-17.45	-17.42	0.014	Li ₁₀ MnCoNi ₈ O ₂₀	P1
161	0.80	0.10	0.10	-17.45	-17.45	0.008	Li ₁₀ MnCoNi ₈ O ₂₀	P-1
162	0.80	0.10	0.10	-17.45	-17.45	0.000	Li ₁₀ MnCoNi ₈ O ₂₀	P2/m
163	0.83	0.00	0.17	-17.54	-17.55	0.036	Li ₆ MnNi ₅ O ₁₂	C2/m
164	0.83	0.00	0.17	-17.57	-17.60	0.000	Li ₆ MnNi ₅ O ₁₂	P-1
165	0.86	0.00	0.14	-17.42	-17.46	0.015	Li ₇ MnNi ₆ O ₁₄	P-1
166	0.86	0.14	0.00	-16.99	-16.98	0.005	Li ₇ CoNi ₆ O ₁₄	P-1
167	0.86	0.14	0.00	-16.99	-16.98	0.003	Li ₇ CoNi ₆ O ₁₄	P-1
168	0.89	0.00	0.11	-17.23	-17.22	0.008	Li ₉ MnNi ₈ O ₁₈	R-3
169	0.89	0.11	0.00	-16.87	-16.84	0.028	L1 ₉ CoNi ₈ O ₁₈	P-3m1
170	0.90	0.00	0.10	-17.17	-17.19	0.002	Li ₁₀ MnNi ₉ O ₂₀	P-1
171	0.90	0.10	0.00	-16.87	-16.86	0.000	Li ₁₀ CoNi ₉ O ₂₀	P-1
172	1.00	0.00	0.00	-16.58	-16.58	0.000	LiNiO ₂	R-3m

Table S3 Training structures for the Lithium sublattice

no	Li	E _{DFT}	E _{CE}	Dist to GSL meV/f.u.	Dist to GSL cell formula meV/f.u.	
1	0	-19.74	-19.74	0	MnCoNi ₈ O ₂₀ H ₁₀	P2/m
2	0.1	-20.08	-20.08	0.028	LiMnCoNi ₈ Õ ₂₀ H _o	P2/m
3	0.1	-20.09	-20.09	0.023	LiMnCoNi ₈ O ₂₀ H ₀	P2/m
4	0.1	-20.11	-20.11	0.002	LiMnCoNi ₈ O ₂₀ H ₀	P2
5	0.2	-20.44	-20.44	0.04	Li ₂ MnCoNi ₈ Õ ₂₀ H ₈	P2
6	0.2	-20.45	-20.45	0.026	Li ₂ MnCoNi ₈ O ₂₀ H ₈	P2/m
7	0.2	-20.48	-20.48	0	Li ₂ MnCoNi ₈ O ₂₀ H ₈	P2/m
8	0.3	-20.77	-20.77	0.055	Li ₃ MnCoNi ₈ O ₂₀ H ₇	P2
9	0.3	-20.8	-20.8	0.028	Li ₃ MnCoNi ₈ O ₂₀ H ₇	P2/m
10	0.3	-20.81	-20.81	0.015	Li ₃ MnCoNi ₈ O ₂₀ H ₇	P2
11	0.3	-20.82	-20.82	0.006	Li ₃ MnCoNi ₈ O ₂₀ H ₇	P2/m
12	0.3	-20.82	-20.82	0.001	Li ₃ MnCoNi ₈ O ₂₀ H ₇	P2
13	0.4	-21.03	-21.03	0	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2
14	0.4	-21.06	-21.06	0.109	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2
15	0.4	-21.09	-21.09	0.082	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2
16	0.4	-21.09	-21.09	0.081	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2
17	0.4	-21.16	-21.17	0.006	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2
18	0.4	-21.17	-21.17	0	Li ₄ MnCoNi ₈ O ₂₀ H ₆	P2/m
19	0.5	-21.42	-21.42	0.096	Li ₅ MnCoNi ₈ O ₂₀ H ₅	P2
20	0.5	-21.48	-21.48	0.035	Li ₅ MnCoNi ₈ O ₂₀ H ₅	P2
21	0.5	-21.51	-21.51	0	Li ₅ MnCoNi ₈ O ₂₀ H ₅	P2/m
22	0.6	-21.71	-21.71	0.138	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2
23	0.6	-21.73	-21.72	0.125	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2
24	0.6	-21.77	-21.76	0.082	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2
25	0.6	-21.78	-21.78	0.066	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2/m
26	0.6	-21.81	-21.81	0.037	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2
27	0.6	-21.85	-21.85	0	Li ₆ MnCoNi ₈ O ₂₀ H ₄	P2/m
28	0.7	-22.04	-22.04	0.104	Li ₇ MnCoNi ₈ O ₂₀ H ₃	P2
29	0.7	-22.1	-22.11	0.039	Li ₇ MnCoNi ₈ O ₂₀ H ₃	P2/m
30	0.7	-22.11	-22.11	0.034	Li ₇ MnCoNi ₈ O ₂₀ H ₃	P2/m
31	0.7	-22.14	-22.14	0.003	Li ₇ MnCoNi ₈ O ₂₀ H ₃	P2
32	0.7	-22.14	-22.14	0.001	Li ₇ MnCoNi ₈ O ₂₀ H ₃	P2
33	0.8	-22.4	-22.4	0.03	Li ₈ MnCoNi ₈ O ₂₀ H ₂	P2
34	0.8	-22.43	-22.43	0.005	Li ₈ MnCoNi ₈ O ₂₀ H ₂	P2/m
35	0.8	-22.43	-22.43	0	Li ₈ MnCoNi ₈ O ₂₀ H ₂	P2
36	0.8	-22.43	-22.44	0	Li ₈ MnCoNi ₈ O ₂₀ H ₂	P2
37	0.9	-22.7	-22.7	0.03	Li ₉ MnCoNi ₈ O ₂₀ H	P2/m
38	0.9	-22.73	-22.73	0	Li ₉ MnCoNi ₈ O ₂₀ H	P2
39	1	-23.02	-23.02	0	Li ₁₀ MnCoNi ₈ O ₂₀	P2/m