Potential Thermoelectric Material Tl₃XS₄ (X = V, Nb, Ta) with Ultralow Lattice Thermal Conductivity

Xiefei Song ^{*a}, Guangzhao Wang ^b, Wenzhong Li ^a, Siyu Gan ^d, Yan Cai ^a, Dianxu Ma ^a, Yuhui Luo ^a, Yao He ^{*c} and Ning Wang ^{*d}

^a College of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, Yunnan, China

^b Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China

^c Department of Physics, Yunnan University, Kunming 650091, China

^d School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China

* Corresponding author.

E-mail: xiefsong2023@163.com (Xiefei Song), yhe@ynu.edu.cn (Yao He), ningwang0213@163.com (Ning Wang)

Figure. S1 The absolute Seebeck coefficient |S| dependent Lorenz number calculated by the SPB model and Snyder's model of Tl₃VS₄ at 300 K (a), 500 K (b), and 700 K (c).

Figure. S2 The absolute Seebeck coefficient |S| dependent Lorenz number calculated by the SPB model and Snyder's model of Tl₃NbS₄ at 300 K (a), 500 K (b), and 700 K (c).

Figure. S3 The absolute Seebeck coefficient |S| dependent Lorenz number calculated by the SPB model and Snyder's model of Tl₃TaS₄ at 300 K (a), 500 K (b), and 700 K (c).